

Engineering Spatial Data Advanced Technologies

Courtyard I 7500 Jefferson St. NE Albuquerque, NM 87109-4335

www.bhinc.com

voice: 505.823.1000 facsimile: 505.798.7988 toll free: 800.877.5332

MEMORANDUM

DATE: July

July 12, 2017

TO:

Jerry Lovato, PE, AMAFCA

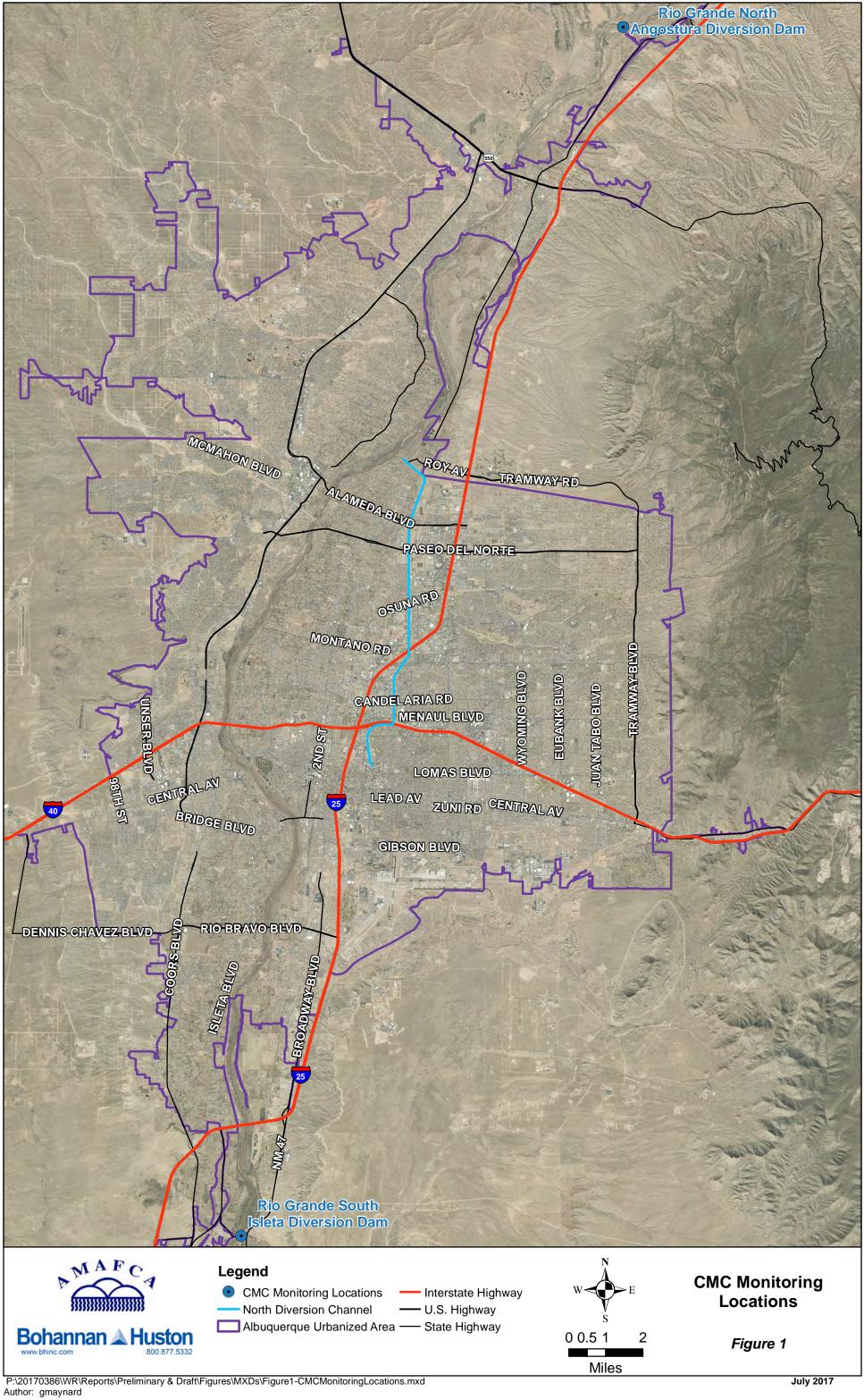
Patrick Chavez, PE, AMAFCA

FROM:

Craig Hoover, PE

Sarah Ganley, PE 439

SUBJECT:


CMC Dry Season, Wet Weather Stormwater Monitoring

Data Verification, Analysis Results Database, and Reporting FY 2017 Dry Season (November 1, 2016, to June 30, 2017) Memo

Overview of Stormwater Monitoring Activity

Bohannan Huston, Inc. (BHI) has been tasked to perform water quality services for the Compliance Monitoring Cooperative (CMC) Stormwater Data Verification, Database, and Reporting for the Wet Weather Stormwater Quality Monitoring Program for Fiscal Year (FY) 2017 (July 1, 2016, to June 30, 2017). The scope of work for this task includes data verification of the stormwater laboratory analysis results, compiling the analysis results into a database, and calculating the E. coli daily loading to compare with the Waste Load Allocation (WLA) for the qualifying storm events. The stormwater compliance monitoring is being conducted separately by Daniel B. Stephens & Associates, Inc. (DBS&A) and is not a part of this on-call task. This task is being conducted to assist the CMC members with their comprehensive monitoring and assessment program for compliance under the 2014 Middle Rio Grande Watershed Based Municipal Separate Storm Sewer System (MS4) Permit, NPDES Permit No. NMR04A000 ("WSB MS4 Permit").

As identified in the CMC Monitoring Plan, the WSB MS4 Permit requires that a minimum of seven (7) storm events be sampled at both the Rio Grande North and Rio Grande South locations (refer to Figure 1, page 2). During the 5-year WSB MS4 Permit term, at least three (3) events must be sampled in the wet season (between July 1 and October 31, 2016) and at least two (2) events in the dry season (between November and June). The remaining two (2) required events can be obtained during either the wet or dry seasons. During the FY 2017 dry season (November 2016 through June 2017) there was one (1) qualifying storm event where samples were collected for both the Rio Grande North and Rio Grande South locations.

Summary of the CMC Sampling Plan

Sampling Parameters:

Samples from both the Rio Grande North and Rio Grande South monitoring locations were analyzed for the parameters defined in the EPA approved WSB MS4 CMC Monitoring Plan, May 5, 2016. The parameter list for both locations, which is intended to characterize stormwater discharges into the river, is as follows:

Total Suspended Solids (TSS)

Total Dissolved Solids (TDS)

Chemical Oxygen Demand (COD)

Biological Oxygen Demand – 5-day (BOD₅)

Dissolved Oxygen (DO)

Oil & grease (N-Hexane Extractable Material)

E. coli

pН

Total Kjeldahl Nitrogen (TKN)

Nitrate plus Nitrite

Dissolved Phosphorus

Ammonia plus Organic Nitrogen (Nitrogen, Ammonia and Nitrogen, Total)

Phosphorous (Total Phosphorous)

Polychlorinated Biphenyls (PCBs – Method 1668A)

Gross Alpha

Tetrahydrofuran

Benzo(a)pyrene

Benzo(b)fluoranthene (3, 4 Benzofluoranthene)

Benzo(k)fluoranthene

Chrysene

Indeno(1,2,3-cd)pyrene

Dieldrin

Pentachlorophenol

Benzidine

Benzo(a)anthracene

Dibenzofuran

Dibenzo(a, h)anthracene

Chromium VI (Hexavalent)

Copper - Dissolved

Lead - Dissolved

Bis(2-ethylhexyl)phthalate

Conductivity

Temperature

Hardness (as CaCO3) – added to allow dissolved metal results to be compared to the applicable water quality standards

DO, pH, conductivity, and temperature are required by the WSB MS4 Permit to be analyzed in the field during sample collection, which was conducted by DBS&A, within fifteen (15) minutes of sample collection. All E. coli samples were submitted to the laboratory within six (6) hours of collection in order to meet the specified hold time.

Sampling Locations:

The sampling locations are shown in Figure 1, page 2.

Rio Grande North – Instream sampling within the Rio Grande was performed upstream of the Angostura Diversion Dam at the north end of the watershed. The location is upstream of all inputs from the Urban Area (UA) to the river and provides the background water conditions.

Rio Grande South – Instream sampling within the Rio Grande was performed at the Isleta Bridge at the south end of the watershed. The location is downstream of all inputs from the UA to the river and provides the downstream water conditions.

These locations have been accepted by EPA and New Mexico Environment Department (NMED) to meet the WSB MS4 Permit requirements in Part III.A. These North and South instream sample locations capture all inputs to the Rio Grande within the UA.

Sample Collection:

As mentioned previously, sample collection for the CMC is being conducted by DBS&A through a separate on-call contract. Since BHI was not involved, this task and memo do not address the details of the methodologies regarding sampling, determining if an event was a qualifying storm event, or determining the timing of the hydrograph at the Rio Grande South location. After the November qualifying storm event sample was obtained, the CMC instructed DBS&A to stop sample collection during the remainder of the dry season.

DBS&A provided BHI with their field notes and field sample data (temperature, DO, specific conductivity, and pH) for the FY 2017 dry season sampling. AMAFCA provided BHI the completed laboratory analysis reports from Hall Environmental Analysis Laboratory (HEAL) for this monitoring season.

Quality Assurance Project Plan (QAPP):

AMAFCA provided BHI with the Draft Quality Assurance Project Plan (QAPP) for the CMC dated June 14, 2016. DBS&A followed this QAPP during sample collection. BHI used this QAPP and the included standard operating procedures (SOPs) for the data verification and validation.

Monitoring Activity & Lab Analysis Summary

The list below provides a chronological summary of the CMC comprehensive monitoring program activities completed by DBS&A for the FY 2017 dry season from November 2016 through June 2017. One (1) qualifying storm event was sampled and analyzed during the FY 2017 dry season.

- ➤ November 3 Only E. coli for Rio Grande North. A sample was collected at the Rio Grande North location and sent to the laboratory for an E. coli only test. Based on review of the storm event by the CMC, it was determined this was not a qualifying storm event; therefore, full parameter testing did not occur for the sample collected at the Rio Grande North location.
- November 21-22 Qualifying Storm Event Full Analysis of Samples. A sample was collected at the Rio Grande North location beginning at 9:30 a.m. on November 21 and sent to the laboratory for an E. coli only test. The CMC determined that the storm event

beginning November 21 was a qualifying storm event. A Rio Grande South sample was collected beginning at 7:00 a.m. on November 22; the samples from the North (from November 21 collection) and South locations were taken to the laboratory for full parameter testing.

Stormwater Quality Database for CMC

As stated previously, there was one (1) qualifying storm event sampled during the FY 2017 dry season, wet weather monitoring which occurred November 21-22, 2016. DBS&A's field notes containing DO, pH, conductivity, and temperature measurements, as well as comments for the sampling done in November, have been received, and field results have been added to the database. Additionally, the HEAL reports for the corresponding time period have been received, added to the database, and are provided with this memo (Attachment 1). The laboratory reports attached to this memo have BHI added comments including the field parameter measurements and other relevant notes related to each laboratory report.

The HEAL analyses for the one (1) qualifying storm event contain the full parameter list for both the Rio Grande North and Rio Grande South sampling locations. There was one other precipitation event in November 2016 that did not evolve into qualifying storm events; however, an E. coli sample was still collected and field data was measured for the Rio Grande North location. The HEAL lab reports are provided with this memo (Attachment 1). Despite not being qualifying storm events, the field and E. coli data collected were added to the database as they provide additional background data for the CMC program.

Database Creation and Data Entry:

An Excel database of the FY 2017 wet weather monitoring data was created for this Task and provided with the March 6, 2017 FY 2017 Wet Season Memo. The November 2016 dry season monitoring data has been added to this database. The database contains sample locations (Rio Grande North and Rio Grande South), sample date, analyses conducted, methods used, applicable surface water quality standards (WQS), WSB MS4 Permit required Minimum Quantification Levels (MQL), and analysis results. Applicable surface WQS found in New Mexico Administrative Code (NMAC) 20.6.4, as well as the Pueblo of Isleta and Pueblo of Sandia WQS, are entered in the Excel database for comparison purposes with testing results. There is an indicator in the database to show if the monitoring results exceed the applicable surface WQS. An exceedance is not a violation of the WSB MS4 Permit, as the Permit does not have numeric discharge limitations. These ">WQ Standard" flags simply and quickly show the CMC members where the results of the lab data exceed the applicable surface WQS.

Upon receipt of the HEAL lab reports, water quality data was entered into the database. All data entered into the database is initially denoted with a "P" to indicate that it is provisional and has not been through the verification and validation process yet. Full parameter analyses of the qualifying storm event for both Rio Grande North and Rio Grande South locations were entered respectively into the database. In addition, the E. coli and field data only samples from the Rio Grande North location, obtained during one non-qualifying storm event, were also entered into the database.

Data Verification and Validation:

The HEAL laboratory analysis reports were provided to BHI by AMAFCA. The lab reports also contain the Chain of Custody for the submitted samples. Field data was requested by and

provided to BHI by DBS&A. Data verification and validation (V & V) was conducted by BHI on all field notes, lab reports, and Chain of Custody documents in accordance with the CMC Water Quality Standard Operating Procedure (SOP) #2, which is part of the existing CMC QAPP, Draft June 14, 2016. These procedures are based on EPA Guidance for Environmental Data Verification and Validation (U.S. EPA, 2008).

As stated in the QAPP, the V & V process was completed by a different person than the one who entered the data into the database. The V & V process included use of the *Data Verification and Validation Worksheet* (provided in the QAPP). For this task, field data was verified first, confirming that all field notes were complete. BHI handled field parameter questions directly with DBS&A. Chemical data verification began as soon as the lab reports were received, checking that all parameters were tested and looking for any obvious exceedances of surface WQS. Other steps listed on the *Data Verification and Validation Worksheet* were completed after all data from the laboratory was received and entered into the database. Sample blank results were reviewed to identify potential contamination during field processing or transport. Replica/duplicate samples were evaluated based on relative percent difference (as described in more detail in the QAPP) to determine the variability of the samples.

There were not any CMC FY 2017 dry season data that did not meet the appropriate QA/QC requirements. If there were any data that did not meet the appropriate QA/QC requirements, it would have been assigned an appropriate laboratory qualifier or validation code. A summary of validation codes is provided in the QAPP.

Once the V & V process was completed, the worksheets were signed. Copies of the V & V worksheets are provided with this memo (Attachment 2). In the database, data that was checked during the V & V process was then changed from being denoted with a "P" for provisional to a "V" for verified, and laboratory qualifiers were added as needed.

CMC FY 2017 Dry Season Assessment and Evaluation of Monitoring Results

The EPA approved WSB MS4 CMC Monitoring Plan, May 5, 2016, has thirty-four (34) parameters to monitor at the Rio Grande North and Rio Grande South monitoring locations. Of these thirty-four (34) parameters (which include four field parameters), over half of the parameters—eighteen (18) parameters—were not detected in the FY 2017 dry season samples at either the Rio Grande North or South locations. Refer to Table 1 for a list of the parameters that were not detected.

Table 1: Parameters Not Detected CMC FY 2017 Dry Season Monitoring

Parameters Not Detected									
Oil and Grease (N-Hexane Extractable Material)	Pentachlorophenol								
Ammonia (mg/L as N)	Benzidine								
Tetrahydrofuran	Benzo(a)anthracene								
Benzo(a)pyrene	Dibenzofuran								
Benzo(b)fluoranthene (3, 4 Benzofluoranthene)	Dibenzo(a,h)anthracene								
Benzo(k)fluoranthene	Chromium VI (Hexavalent)								
Chrysene	Dissolved Copper								
Indeno(1,2,3-cd)Pyrene	Dissolved Lead								
Dieldren	Bis (2-ethyhexyl) Phthalate								

The FY 2017 wet season also had eighteen (18) parameters that were not detected at either the Rio Grande North or South locations. The wet season non-detected parameters differed by two parameters as compared to the dry season; dissolved copper was detected in the wet season samples, and Total Kjedahl Nitrogen (TKN) was not detected in the wet season samples.

E. coli:

For the remaining sixteen (16) parameters on the CMC monitoring parameter list, only one parameter (E. coli) had exceedances of the applicable surface WQS found in New Mexico Administrative Code (NMAC) 20.6.4 and the Pueblo of Isleta and Pueblo of Sandia WQS during the FY 2017 dry season. At the Rio Grande North location (upstream of the Albuquerque UA, at the Angostura Diversion Dam), two (2) samples were collected and tested for E. coli, and neither of the samples had results that exceeded the primary contact-single sample Pueblo of Isleta and Pueblo of Sandia WQS (88 CFU/100 mL). At the Rio Grande South location (downstream of the MS4 UA), one (1) sample was collected and tested for E. coli, and this sample's result exceeded the primary contact-single sample NMAC WQS (410 CFU/100 ml) as well as the Pueblo of Isleta and Pueblo of Sandia WQS (88 CFU/100 mL). As a reminder, the E. coli units of MPN/100 mL and CFU/100 mL are considered to be interchangeable; the March 6, 2017 FY 2017 Wet Season Memo provides additional documentation regarding the E. coli units.

Dissolved Oxygen, PCB's and Temperature:

Three of the water quality parameters are specifically worth mentioning in this memo because they are listed in the WSB MS4 Permit, Part I.C.1 – Special Conditions: dissolved oxygen, PCBs, and temperature.

Dissolved oxygen is a water quality concern in the Rio Grande if it is below 5 mg/L. None of the samples taken from the Rio Grande during the FY 2017 CMC monitoring program had dissolved oxygen values below 5 mg/L. Refer to Figure 2 for dissolved oxygen results and comparison to applicable surface WQS.

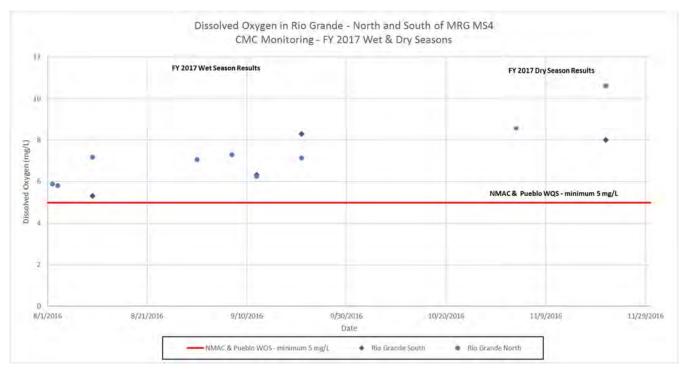


Figure 2: Dissolved Oxygen Results for Rio Grande CMC Monitoring – FY 2017 Wet and Dry Seasons

For the CMC FY 2017 dry season sample, as well as for the three (3) FY 2017 wet season samples, there were no exceedances of WQS for PCBs.

Temperature is listed in the WSB MS4 Permit as a special condition (only applicable to the City of Albuquerque and AMAFCA). Past data submitted to EPA and NMED has proven that stormwater discharges into the Rio Grande are not impacting the Rio Grande temperature above the applicable WQS. The data collected during this FY 2017 dry season monitoring supports this conclusion. All of the temperature field readings taken in the Rio Grande during the CMC FY 2017 dry season were below 32.2°C (90 °F) – the WQS for the State of New Mexico and for the Isleta and Sandia Pueblos.

CMC FY 2017 Wet Season E. coli Loading Calculations and Waste Load Allocation (WLA)

Related to assessing the stormwater results, BHI has calculated the E. coli daily loading and compared it to the aggregate Total Maximum Daily Load (TMDL) Waste Load Allocation (WLA) for the CMC group. A TMDL is the maximum amount of a pollutant (E. coli in this case) that a water body (Rio Grande) can assimilate on a daily basis without violating applicable surface WQS. The total TMDL for a stream segment consists of the multiple WLA for point sources, non-point sources, and natural sources, plus a margin of safety. The CMC MS4 allotted WLA was determined in the US EPA Approved, Total Maximum Daily Load for the Middle Rio Grande Watershed, June 30, 2010, and subsequent communications with NMED. The WLA varies by flow condition in the Rio Grande and by stream segment.

E. coli loading calculations and comparison to the WLA follows the WSB MS4 Permit requirements in "Discharges to Water Quality Impaired Water Bodies with an Approved TMDL," Part I.C.2.b.(i).(c).B, Appendix B-Total Maximum Daily Loads (TMDLs) Tables of the WSB MS4 Permit, and the NMED guidance provided to the CMC.

Attached to this memo is the WLA Calculation spreadsheet which steps through the E. coli daily loading calculations and assumptions comparing the calculated E. coli loading to the CMC aggregate WLA defined by NMED. BHI provided the draft calculations spreadsheet for review to AMAFCA, who shared this with other CMC members, in both December 2016 and February 2017, related to the wet season monitoring results. The CMC members also met to discuss the E. coli loading calculations with NMED on February 1, 2017. BHI followed up with NMED on February 16, 2017, regarding specific calculation details. The current spreadsheet includes the improvements discussed at the NMED meeting and follow-up phone call.

There are two (2) stream segments defined in the WSB MS4 Permit (Appendix B) for the Middle Rio Grande: Isleta Pueblo Boundary to Alameda Street Bridge (Stream Segment 2105_50) and Non-Pueblo Alameda Bridge to Angostura Diversion (Stream Segment 2105.1_00). These stream segments differ from NMED's current stream segments defined in "2016-2018 State of New Mexico Clean Water Act Section 303(d)/Section 305(b) Integrated Report," September 23, 2016. NMED currently has four (4) stream segments instead of the two (2) WSB MS4 stream segments; of the four (4) segments, only one segment has an impairment for E. coli (2105_50 Isleta Pueblo Boundary to Tijeras Arroyo). These various stream segment designations are shown in Figure 3, page 10.

NMED provided clarification at the February 1, 2017, meeting regarding the various stream segment designations. The NMED 303(d)/305(b) 2016-2018 Integrated Report tables show the most recent assessment results, and currently there is only one segment of the Middle Rio Grande (Isleta to Tijeras) within the MS4 boundaries that was found to be impaired for E. coli. However, the TMDL for the other Middle Rio Grande stream segments do not go away even if they are no longer impaired—the TMDL remains in place as a protective measure. TMDLs remain in effect after impairments are removed as protective measures.

The E. coli daily loading associated with the CMC group and comparison to the NMED WLA was completed for the one (1) qualifying event storm event monitored in the FY 2017 dry season—November 21-22, 2016. Refer to Table 2 for a summary of the WLA comparison. A spreadsheet is attached to this memo that provides the detailed calculations for all of FY 2017.

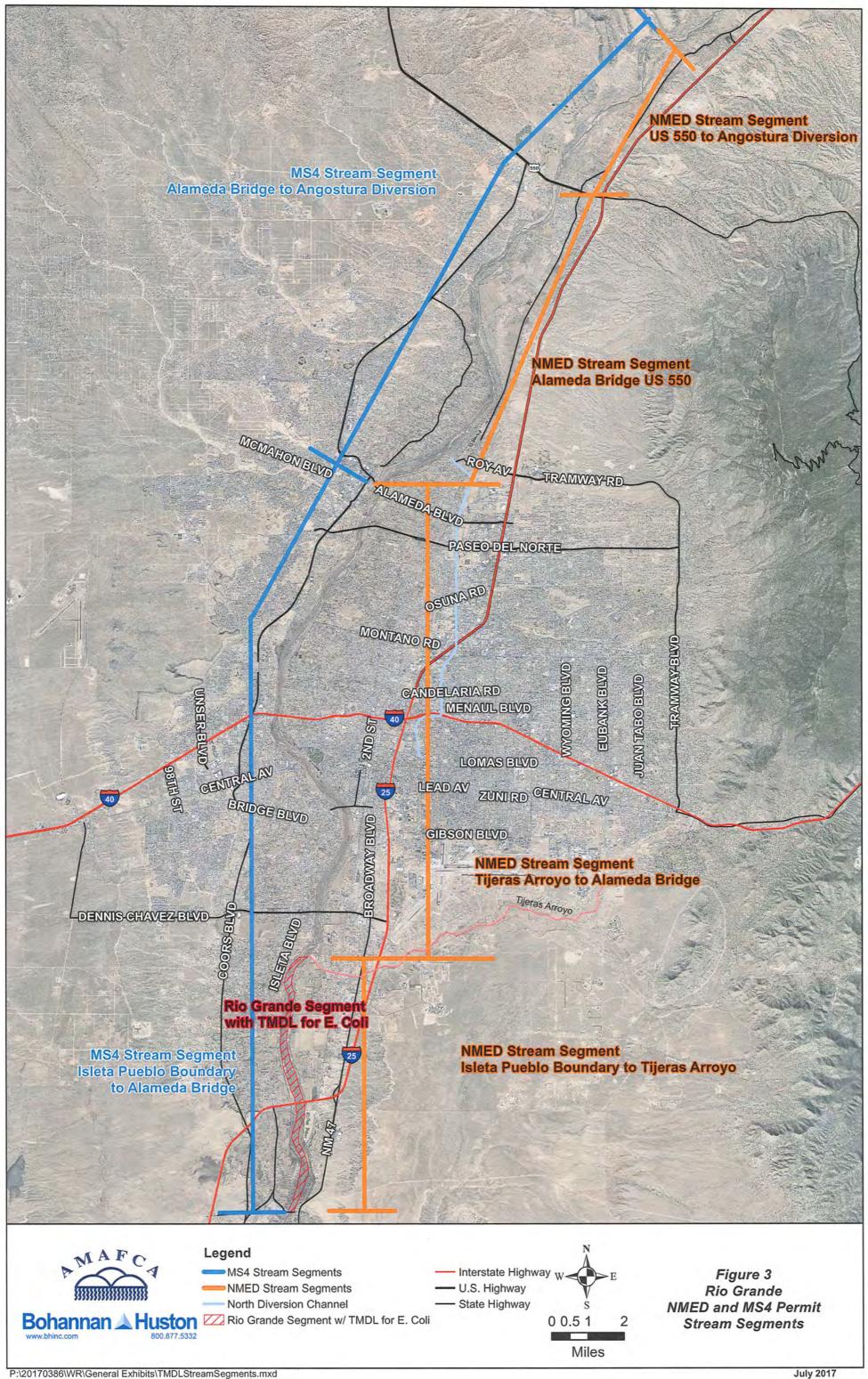


Table 2: Summary of CMC Daily E. Coli Loading Compared to WLA for the CMC

Date / Stream Segment	Daily Mean Flow (cfs)	Flow Conditions (cfs) range defined by NMED	CMC Daily E. coli Loading (CFU/day)	NMED WLA for CMC for Stream Segment and Flow Conditions	Loading Compared to WLA Potential Exceedance or Acceptable
November 21-2 Rio Grande Nor Rio Grande Sou					
Alameda to Angostura	710	Mid	_	WLA Acceptable	
Isleta to Alameda	881	Mid	1.68E+12	4.22E+10	Potential Exceedance

As Table 2 illustrates, the E. coli loading for the dry season event potentially exceeded the CMC allocated WLA in the southern stream segment (Isleta to Alameda) of the Middle Rio Grande. This sampling and calculation approach is only an estimate of the CMC contribution to the E. coli loading which is why the term "potential exceedance" is used. NMED has not set a TMDL or associated WLA values for the Alameda to Angostura stream segment of the Middle Rio Grande for mid-flow conditions (647 to 992 cfs) because there were not observed E. coli exceedances during this flow regime in the data used to develop the TMDL. Therefore, when a qualifying storm event is monitored during mid-flow regime conditions, like the November 21-21, 2016 event, in the Alameda to Angostura stream segment, the CMC's WLA will never be in exceedance since there is not set TMDL.

The WSB MS4 Permit implies that the WLA is a measurable goal for the MS4s related to E. coli. Based on extensive review of the US EPA Approved, Total Maximum Daily Load (TMDL) for the Middle Rio Grande Watershed, June 30, 2010, this seems to be an unattainable goal for MS4s. The 2010 TMDL Report states on page 40, "It is important to remember that the TMDL is a planning tool to be used to achieve water quality standards...Meeting the calculated TMDL may be a difficult objective." The TMDL/WLA was calculated by NMED to meet the Pueblo (Sandia and Isleta) geometric mean maximum of 47 CFU/100 mL which was done to be "protective of downstream waters" and "to provide an implicit margin of safety (MOS)." A single grab sample E. coli result meeting this very low geometric mean WQS will be very difficult for the MS4s to obtain.

The CMC members discussed the difficulty of using the WLA as a measurable goal with NMED on February 1, 2017. NMED explained that exceeding the WLA does not trigger enforcement. However, NMED strongly encouraged the MS4s to document what they are doing once they realize the WLA is potentially exceeded. The February 1, 2017, meeting and the February 16, 2017, CMC discussion with NMED demonstrate that CMC members are working toward understanding the WLA. In addition, the CMC members and NMED discussed potential refinements to the sampling plan, demonstrating that the CMC is investigating the potential exceedances and improvements to monitor E. coli in the Rio Grande.

Data Entry for Discharge Monitoring Reports

As required in the WSB MS4 Permit, verified stormwater quality data must be submitted annually to the EPA using electronic Discharge Monitoring Report (DMR) forms. Data from the DMRs are uploaded to a comprehensive nation-wide database that contains discharge data for facilities and other point sources that discharge directly to receiving streams. Currently, the CMC members are working with the EPA regarding access and use of the NetDMR system. For this Task, BHI has not been tasked with any data entry related to the EPA DMRs for the FY 2017 wet or dry seasons.

Conclusions and Planning

In FY 2017 four (4) qualifying event samples were obtained. During the FY 2017 wet season (July 1 to October 31, 2016) three (3) qualifying stormwater samples were obtained by the CMC, and during the dry season (November 1, 2016 to June 30, 2017) one (1) qualifying stormwater sample was obtained by the CMC. Lab results have been received for these samples. This data has been entered into the project Excel database. The lab data entered is marked in the spreadsheet as "V" (verified), and data V & V has been completed.

To summarize, monitoring results and E. coli loading calculations for the CMC FY 2017 wet and dry seasons show that:

- Four (4) of the seven (7) required samples in the WSB MS4 Permit Wet Weather Monitoring section were obtained in FY 2017. Seven (7) samples are required during the 5-year Permit term, so this is significant progress for the CMC.
- The CMC has met the required Permit minimum of monitoring three (3) events during the wet season and has obtained one (1) of the two (2) events required in the dry season.
- > Over half of the parameters tested were not detected in any of the Rio Grande samples.
- Only E. coli was in exceedance of applicable New Mexico and Pueblos of Sandia and Isleta WQS.
 - All dissolved oxygen results were greater than 5 mg/L (minimum WQS).
 - All temperature results were less than 32.2 °C (maximum WQS).
 - o There were no PCB test results exceeding the applicable WQS.
- ➤ The calculated E. coli loading for the one (1) qualifying storm event in the dry season shows that the WLA for the CMC members is potentially exceeded for the southern stream segment (Isleta to Alameda). NMED has not set a TMDL for the Alameda to Angostura stream segment of the Middle Rio Grande for mid-flow conditions (647 to 992 cfs); therefore, the monitored dry season storm event did not exceed the WLA.
 - Sources for the E. coli loading measured in the river are not solely attributable to the CMC MS4 members; the E. coli loading calculations serve to provide a reasonable estimate of the CMC contribution to the measured E. coli loading.
 - This sampling and calculation approach is only an estimate of the CMC contribution to the E. coli loading which is why the term "potential exceedance" is used.
 - The in-stream data does not provide the concentration of E. coli contributed by only the CMC MS4s, or any of the other potential sources. By using this percentage calculation approach, if other contributors are in exceedance of the

WLA, then the CMC will likely also be in exceedance since this approach relies on a percentage of a total.

SG/le Attachments:

Attachment 1 – Hall Environmental Analysis Laboratory Reports with BHI Notes for FY 2017 Dry Season

Attachment 2 - FY 2017 Dry Season Completed Data Verification and Validation Forms

Spreadsheets Included Separately:

E. coli Loading and Comparison to Waste Load Allocation (WLA) Excel Spreadsheet Excel CMC Spreadsheet with FY 2017 Stormwater Quality Monitoring Results

ATTACHMENT 1 HALL ENVIRONMENTAL ANALYSIS LABORATORY REPORTS WITH BHI NOTES FOR FY 2017 DRY SEASON

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

November 08, 2016

Patrick Chavez
AMAFCA
2600 Prospect Ave NE
Albuquerque, NM 87107
TEL: (505) 884-2215

FAX

RE: CMC OrderNo.: 1611208

Dear Patrick Chavez:

Hall Environmental Analysis Laboratory received 1 sample(s) on 11/3/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Field Data - Provided by DBS&A (field notebook & e-mails):

11/3/16 - Rio Grande North

 $DO = 8.57 \text{ mg/L}, pH = 8.01, Conductivity} = 320$

umhos/cm, and Temperature = 14.6°C

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

Analytical ReportLab Order **1611208**

Date Reported: 11/8/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: AMAFCA Client Sample ID: RGN110316

 Project:
 CMC
 Collection Date: 11/3/2016 2:10:00 PM

 Lab ID:
 1611208-001
 Matrix: AQUEOUS
 Received Date: 11/3/2016 3:02:00 PM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
SM 9223B FECAL INDICATOR: E.	COLI MPN				Analy	/st: tnc
E. Coli	42.0	1.000	CFU/100ml	1	11/4/2016 4:52:00 PI	M 28465

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 1
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory 4901 Hawkins NE

Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: AMAPCA Work Order N	umber: 1611208		RcptNo: 1	
Received by/date: 11/03	3/14			F
Logged By: Ashley Gallegos 11/3/2016 3:02:	00 PM	A		
Completed By: Ashley Gallegos 11/3/2016 3:58:	05 PM	Az		
Reviewed By: 05 11 03 116 (0)	€ 1600	4		
Chain of Custody				
Custody seals intact on sample bottles?	Yes	No	Not Present ✓	
2. Is Chain of Custody complete?	Yes 🗸	No	Not Present	
3. How was the sample delivered?	Client			
<u>Log In</u>				
4. Was an attempt made to cool the samples?	Yes 🗸	No	NA	
5. Were all samples received at a temperature of >0° C to 6.0°		No 🗸	NA	
6. Sample(s) in proper container(s)?	les were collected the Yes .	e same day and No	cnilled.	
7. Sufficient sample volume for indicated test(s)?	Yes 🗸	No		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗸	No		
9. Was preservative added to bottles?	Yes	No 🗸	NA ·	
10.VOA vials have zero headspace?	Yes	No	No VOA Vials 🗸	
11. Were any sample containers received broken?	Yes	No 🗸 :	# of preserved	
12. Does paperwork match bottle labels?	Yes 🗸	No	bottles checked for pH:	
(Note discrepancies on chain of custody)			the second of th	unless noted
13. Are matrices correctly identified on Chain of Custody?	Yes 🗸	No	Adjusted?	
14. Is it clear what analyses were requested?	Yes 🗸	No	01111	
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗸	No	Checked by:	
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes	No	NA 🗸	
Person Notified:	Date	Service or accessed of the production of the service of the servic		
The state of the s		Phone Fax	In Person	
Regarding:	and the second of the second o			
Client Instructions:	gran de relation (III, el 1966), de como de el eller (III, el 1960), el el el el el el el en este de en en el	a kanan a makin da haka a kanan ar haki daka az a npera t	linikki kilan (#a omini intibili kalan namoni minishikiki) ominishikiki (
17. Additional remarks:				
18. Cooler Information	Ny paositra	an.		
Cooler No Temp °C Condition Seal Intact Seal I	No Seal Date	Signed By		

			stody Record	Turn-Around	Time:			"		L	AL		F	NIX	TE	20	M	ИE	NTA	A I	
lient:	Ay	NAFC	4	Standard	□ Rush			25.30											TO		
	Addross			1 Toject Marik	mc		-			!	wwv	v.hal	llenv	vironi	ment	al.co	om				
lalling	Address	·.					_	490	01 H	awki	ins N	ΝΕ -	Alt	ouqu	erque	e, NI	M 87	109			
				Project #:				Te	l. 50	5-34	5-3				505-			7			
hone	#:		COLUMN AND STATE OF THE STATE O			WWW 57-14-3						Α	nal	ysis	Req	ues					
mail c	r Fax#:			Project Mana	iger:	ſ	=	nly)	8	1				04)	70						
A/QC 3 Star	Package: ndard		☐ Level 4 (Full Validation)	Patr	TCK CA	naviz	TMB's (8021)	+ TPH (Gas only)	DRO / MRO)			SIMS)		,PO ₄ ,S	PCB's		0.005	(NWN)	e		
	itation		VV 20	Sampler:		*	MB	H.	-	7	7	8270 \$	139	VO ₂	308			3			F
NEL		□ Othe	r	On Ice:	□ Yes	TÚNo	_ +		8	118.	504.1)		w	03,1	3/S		(A)			1	0
EDE	(Type)	T	<u> </u>	Sample Tem	perature:/5	15 C	밀	BE	9	po v	po	0 or	etal	Z	cide	8	i-V				5
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL No.	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO	TPH (Method 418.1)	EDB (Method	PAH's (8310	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)	E-101.			Air Bubbles (Y or N)
12110	1410	Water	RGN110316	******		-001												X		11	
1-31 14	1110		K0-11 110 22 . 0			001			7	\dashv							-	1		1 1	_
	- INV		HANNEY II			Mariania.			-	-								-			_
						3				\rightarrow					-			\rightarrow	+		
															-			\dashv		1 1	
		-	0.000															\perp			
			200 SECTION 200 SE																		
												-							81		
															T						
			14 20 .						\neg											† †	
									\exists	- 1							-,			1 1	
									\dashv	\dashv	- 6				\neg				+		
ate:	Time:	Relinquishe	l ed by: /)	Received/by:	1 // 4	Date Time	Ren	narks	L s:											1 1	_
 		a	in favor 1	AM	af [will]	11316 1502	\														
	Time:	Relinquishe	ea by:	Received by:		Date Time															

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

December 02, 2016

Patrick Chavez
AMAFCA
2600 Prospect Ave NE
Albuquerque, NM 87107
TEL: (505) 884-2215

FAX

RE: CMC OrderNo.: 1611B12

Dear Patrick Chavez:

Hall Environmental Analysis Laboratory received 1 sample(s) on 11/21/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Field Data - Provided by DBS&A (field notebook & e-mails):

11/21/16 - Rio Grande North

DO = 10.62 mg/L, pH = 8.4, Conductivity = 305 umhos/cm, and Temperature = 10.36°C

Andy Freeman

Laboratory Manager

andel

4901 Hawkins NE

Albuquerque, NM 87109

Analytical ReportLab Order **1611B12**

Date Reported: 12/2/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: AMAFCA

Client Sample ID: Rio Grande North 112116

Project: CMC Collection Date: 11/21/2016 9:30:00 AM

Lab ID: 1611B12-001 **Matrix:** AQUEOUS **Received Date:** 11/21/2016 11:20:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
SM 9223B FECAL INDICATOR: E. C	OLI MPN				Anal	yst: tnc
F. Coli	43.5	1.000	CFU/100ml	1	11/22/2016 4:34:00 [PM 28792

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 1
	ND	Not Detected at the Reporting Limit	P	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

Albuquerque, NM 87109 Sample Log-In Check List TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com Client Name: **AMAFCA** Work Order Number: 1611B12 RcptNo: 1 Received by/date: Logged By: Ashley Galleges 11/21/2016 11:20:00 AM Completed By: Ashley Gallegos 11/21/2016 11:24:06 AM 21 1230 Reviewed By: Chain of Custody No 🗆 Not Present Yes 🗌 1 Custody seals intact on sample bottles? Yes 🗸 No 🗌 Not Present 2. Is Chain of Custody complete? 3. How was the sample delivered? Client Log In No 🔲 NA 🗌 Yes 🗸 4. Was an attempt made to cool the samples? NA 🗌 No V 5. Were all samples received at a temperature of >0° C to 6.0°C Not required No 🗌 Yes 🗸 6. Sample(s) in proper container(s)? Yes 🗸 7. Sufficient sample volume for indicated test(s)? Yes 🗹 No 🗌 8. Are samples (except VOA and ONG) properly preserved? NA 🗌 No V Yes 9. Was preservative added to bottles? No VOA Vials Yes 🗌 No 🗔 10. VOA vials have zero headspace? Yes No 🗸 11. Were any sample containers received broken? # of preserved bottles checked for pH: 12. Does paperwork match bottle labels? Yes 🗹 No 🗌 (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗌 13. Are matrices correctly identified on Chain of Custody? No 🗌 14. Is it clear what analyses were requested? No 🗌 Checked by: Yes 🗸 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) NA 🗸 Yes 🗌 No 🗆 16. Was client notified of all discrepancies with this order? Person Notified: Date By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By 9.7 Good Not Present

	hain-	of-Cu	istody Record	i urn-Arouna	rime:					HA	LL	E	NV	/IF	10	11	1E	NT	'AL	-
Client:	AMA	FCA	20070	Standard						AN										
	* **			Project Name	∌:										tal.cc					
Mailing	Address			CM	C		is	490	1 Ha	wkins	NE -	Alb	uque	erqu	e, Ni	M 87	109			
				Project #:		•		Tel	. 505	-345-3	975	F	ax	505-	-345-	4107	7			
Phone:	#:			N	M15.01	56				a decemberate in					uest					
email o				Project Mana	ager:	m l		(ŚĮĘ	<u> </u>				74)					8		
QA/QC	Package:	K: 409461			Patrick	Chavez	1021	IS OF	DRO/MRO)		S)		4,SC	B's						
□ Stan	dard		□ Level 4 (Full Validation)		Johann	CSw ~	s, (8	9	ဂ္ဂါ		SIMS)		О,	2 PC						
Accred				Sampler:	Baston		TMB's (8021)		~	= =			Anions (F,CI,NO3,NO2,PO4,SO4)	8081 Pesticides / 8082 PCB						9
□ NEL	AP	□ Othe	er	On Ice:	X)Yes	□ No	_ +	+	윤	8 18	r 82	တ	03,1	8 / S		₹	ıl			ا اة
	(Type)		100 La 10	Sample Tem	perature:	Gate Joseph Communication			9	po F	0 0	etal	Z,	cide	æ	\ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </u>	٠ــ			اخ
				Containor	Preservative	В	Σ	Σ	155	달 달	(83	8 M	F)	esti	8	Sem	C& !			ple
Date	Time	Matrix	Sample Request ID	Type and #		HEAL NO.	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO	IPH (Method 418.1) EDB (Method 504.1)	PAH's (8310 or	RCRA 8 Metals	ons	11 P	8260B (VOA)	8270 (Semi-VOA)	Ere	1		Air Bubbles (Y or N)
					100.1	11011812	BTI	BTI			РА	RC	Ani	308	826	827	<u>""</u>			Air
11/21/16	9:30	SW	Rio Grande North 112116	1-1254		-001					\$5.000mg						$ \chi $			
				1-1																
				3														\dashv	1	\top
· ·	-													63			\dashv	+	+	
_					 		1		+									_	+	+
		-							-							-	\dashv	+	+	-
-			-			35.6.53.53.53.53.53.53.53.53.53.53.53.53.53.	1										_	_		\dashv
_						R						102.0					\dashv	_	_ _	44
				ļ					-										_ _	
S-32					 							77.		L.,		0.5		_		\perp
							ļ		_	_								\dashv		
D2																				
	00				<u> </u>					,							engra se			
Date:	Time:	Relinguis	hed by:	Received by:	$\overline{}$	Date Time	Rer	narks	P.											
121/16	11:70	Re	stell of			11/2/11/12 1/2	P													
Date:	Time:	Relinquis	fied by:	Received by:		[‡] Date [₺] Time														
					\triangle				55	_										
	If necessary.	samples sub	omitted to Hall Environmental may be sub-	contracted to other a	ccredited laboratori	es. This serves as notice of this	possil	bility. Ar	ıv sub-	contracte	d data	will be	clear	v nota	ted on	the an	alvtical	report		

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

December 23, 2016

Patrick Chavez
AMAFCA
2600 Prospect Ave NE
Albuquerque, NM 87107
TEL: (505) 884-2215

FAX

RE: CMC OrderNo.: 1611B75

Dear Patrick Chavez:

Hall Environmental Analysis Laboratory received 3 sample(s) on 11/22/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

& e-mails): 11/21/16 - Rio Grande North

DO = 10.62 mg/L, pH = 8.4, Conductivity = 305

Field Data - Provided by DBS&A (field notebook

umhos/cm, and Temperature = 10.36°C

11/22/16 - Rio Grande South

 $DO = 8.01 \text{ mg/L}, pH = 8.08, Conductivity} = 367$

umhos/cm, and Temperature = 9.3°C

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

andel

Lab Order: 1611B75

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/23/2016

CLIENT:AMAFCAClient Sample ID: Rio Grande-North-112116Project:CMCCollection Date: 11/21/2016 9:30:00 AM

Lab ID: 1611B75-001B Matrix: Aqueous

Analyses	Result	PQL Qı	ual Units	DF	Date Analyzed	Batch ID
SM5210B: BOD					Anal	yst: SMS
Biochemical Oxygen Demand	DO Depletion<2.0	2.0	mg/L	1	11/27/2016 11:09:00	O AM 28809

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

Reporting Detection Limit

- J Analyte detected below quantitation limits
- P Sample pH Not In Range

Page 1 of 22

Lab Order: **1611B75**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/23/2016

CLIENT:AMAFCAClient Sample ID: Rio Grande-North-112116Project:CMCCollection Date: 11/21/2016 9:30:00 AM

Lab ID: 1611B75-001D Matrix: Aqueous

Analyat:	
Analysi. I	_GT
11/22/2016 10:29:21 PM I	R38938
11/22/2016 10:29:21 PM I	R38938
Analyst: I	KS
11/29/2016 7:42:00 PM	28867
Analyst: (CJS
12/9/2016 2:11:00 PM	R39298
Analyst: \$	SRM
12/15/2016 4:55:00 PM	R39426
Analyst:	JRR
11/22/2016 4:33:22 PM	R38947
Analyst:	JRR
12/2/2016 10:17:24 AM	28952
Analyst: (CJS
12/13/2016 11:26:00 AM 2	29132
Analyst: I	KS
11/28/2016 4:20:00 PM	28852
111111111111111111111111111111111111111	Analyst: I Analyst: I Analyst: I 1/29/2016 7:42:00 PM Analyst: I 2/9/2016 2:11:00 PM Analyst: I Analyst: I

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

Reporting Detection Limit

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- Page 2 of 22

Lab Order: 1611B75

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/23/2016

CLIENT:AMAFCAClient Sample ID: Rio Grande-North-112116Project:CMCCollection Date: 11/21/2016 9:30:00 AM

Lab ID: 1611B75-001E Matrix: Aqueous

Analyses	Result PQL Qual Unit		ual Units	DF	Date Analyzed	Batch ID
EPA METHOD 1664A					Anal	lyst: tnc
N-Hexane Extractable Material	ND	10.7	mg/L	1	11/28/2016 9:14:00	AM 28858

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

Reporting Detection Limit

- J Analyte detected below quantitation limits
- P Sample pH Not In Range

Page 3 of 22

Lab Order: 1611B75

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/23/2016

CLIENT:AMAFCAClient Sample ID: Rio Grande-North-112116Project:CMCCollection Date: 11/21/2016 9:30:00 AM

Lab ID: 1611B75-001F Matrix: Aqueous

Analyses	Result	PQL (Qual Units	DF	Date Analyzed	Batch ID
EPA 200.8: DISSOLVED METALS					Anal	yst: JLF
Copper	ND	0.0010	mg/L	1	12/2/2016 3:56:41 F	PM B39114
Lead	ND	0.00050	mg/L	1	12/2/2016 3:56:41 F	PM B39114
Uranium	0.0024	0.00050	mg/L	1	12/2/2016 3:56:41 F	PM B39114
SM2340B: HARDNESS					Anal	yst: MED
Hardness (As CaCO3)	130	6.6	mg/L	1	12/14/2016	R39376
EPA METHOD 200.7: DISSOLVED	METALS				Anal	yst: MED
Calcium	40	1.0	mg/L	1	12/14/2016 9:47:40	AM A39376
Magnesium	7.3	1.0	mg/L	1	12/14/2016 10:46:06	6 AM A39376

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 4 of 22

Lab Order: **1611B75**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/23/2016

CLIENT:AMAFCAClient Sample ID: Rio Grande-North-112116Project:CMCCollection Date: 11/21/2016 9:30:00 AM

Lab ID: 1611B75-001K Matrix: Aqueous

Analyses	Result	PQL Qu	ual Units	DF	Date Analyzed	Batch ID
EPA METHOD 365.1: TOTAL PHOSP	HOROUS				Anal	yst: JRR
Phosphorus, Total (As P)	0.012	0.010	mg/L	1	12/2/2016 10:21:54	AM 28952

Dissolved Phosphorous

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

Reporting Detection Limit

- J Analyte detected below quantitation limits
- P Sample pH Not In Range

Page 5 of 22

Lab Order: 1611B75

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/23/2016

CLIENT:AMAFCAClient Sample ID: Rio Grande-South-112216Project:CMCCollection Date: 11/22/2016 7:00:00 AM

Lab ID: 1611B75-002A Matrix: Aqueous

Analyses	Result	PQL Qı	ual Units	DF	Date Analyzed	Batch ID
SM 9223B FECAL INDICATO	R: E. COLI MPN				Anal	yst: tnc
E. Coli	7270	10.00	CFU/100ml	10	11/23/2016 2:54:00	PM 28825

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 6 of 22

Lab Order: 1611B75

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/23/2016

CLIENT:AMAFCAClient Sample ID: Rio Grande-South-112216Project:CMCCollection Date: 11/22/2016 7:00:00 AM

Lab ID: 1611B75-002B **Matrix:** Aqueous

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed	Batch ID
SM5210B: BOD					Anal	yst: SMS
Biochemical Oxygen Demand	3.0	2.0	mg/L	1	11/27/2016 11:09:00	O AM 28809

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

Reporting Detection Limit

- J Analyte detected below quantitation limits
- P Sample pH Not In Range

Page 7 of 22

Lab Order: **1611B75**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/23/2016

CLIENT:AMAFCAClient Sample ID: Rio Grande-South-112216Project:CMCCollection Date: 11/22/2016 7:00:00 AM

Lab ID: 1611B75-002D Matrix: Aqueous

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed Batch	ı ID
EPA METHOD 300.0: ANIONS						Analyst: LG	Т
Nitrogen, Nitrite (As N)	ND	0.50		mg/L	5	11/22/2016 9:39:42 PM R38	8938
Nitrogen, Nitrate (As N)	0.68	0.50		mg/L	5	11/22/2016 9:39:42 PM R38	8938
SM2540C MOD: TOTAL DISSOLVED SO	LIDS					Analyst: KS	
Total Dissolved Solids	248	40.0	D	mg/L	1	11/29/2016 7:42:00 PM 288	867
SM 4500 NH3: AMMONIA						Analyst: CJS	S
Nitrogen, Ammonia	ND	1.0		mg/L	1	12/9/2016 2:11:00 PM R39	9298
TOTAL NITROGEN						Analyst: SRI	М
Nitrogen, Total	2.9	1.0		mg/L	1	12/15/2016 4:55:00 PM R39	9426
SM4500-H+B: PH						Analyst: JRF	R
рН	8.09	1.68	Н	pH units	1	11/22/2016 4:37:41 PM R38	8947
EPA METHOD 365.1: TOTAL PHOSPHOI	ROUS					Analyst: JRF	R
Phosphorus, Total (As P)	0.55	0.010		mg/L	1	12/2/2016 10:23:24 AM 289	952
SM 4500 NORG C: TKN						Analyst: CJS	S
Nitrogen, Kjeldahl, Total	2.2	2.0	D	mg/L	1	12/13/2016 11:26:00 AM 291	32
SM 2540D: TSS						Analyst: KS	
Suspended Solids	340	4.0		mg/L	1	11/28/2016 4:20:00 PM 288	352

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

Reporting Detection Limit

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- Page 8 of 22

Lab Order: 1611B75

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/23/2016

CLIENT:AMAFCAClient Sample ID: Rio Grande-South-112216Project:CMCCollection Date: 11/22/2016 7:00:00 AM

Lab ID: 1611B75-002E Matrix: Aqueous

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed	Batch ID
EPA METHOD 1664A					Anal	yst: tnc
N-Hexane Extractable Material	ND	10.2	mg/L	1	11/28/2016 9:14:00	AM 28858

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

Reporting Detection Limit

- J Analyte detected below quantitation limits
- P Sample pH Not In Range

Page 9 of 22

Lab Order: **1611B75**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/23/2016

CLIENT:AMAFCAClient Sample ID: Rio Grande-South-112216Project:CMCCollection Date: 11/22/2016 7:00:00 AM

Lab ID: 1611B75-002F Matrix: Aqueous

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed	Batch ID
EPA 200.8: DISSOLVED METAL	.s				Anal	yst: JLF
Copper	ND	0.0010	mg/L	1	12/2/2016 3:59:45 P	M B39114
Lead	ND	0.00050	mg/L	1	12/2/2016 3:59:45 P	M B39114
Uranium	0.0020	0.00050	mg/L	1	12/2/2016 3:59:45 P	M B39114
SM2340B: HARDNESS					Anal	yst: MED
Hardness (As CaCO3)	130	6.6	mg/L	1	12/14/2016	R39376
EPA METHOD 200.7: DISSOLVE	D METALS				Anal	yst: MED
Calcium	41	1.0	mg/L	1	12/14/2016 9:51:34	AM A39376
Magnesium	7.3	1.0	mg/L	1	12/14/2016 10:48:04	4 AM A39376

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

Reporting Detection Limit

- J Analyte detected below quantitation limits
- P Sample pH Not In Range

Page 10 of 22

Lab Order: 1611B75

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/23/2016

CLIENT:AMAFCAClient Sample ID: Rio Grande-South-112216Project:CMCCollection Date: 11/22/2016 7:00:00 AM

Lab ID: 1611B75-002L Matrix: Aqueous

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch ID
EPA METHOD 365.1: TOTAL PHOSPH	OROUS				Anal	yst: JRR
Phosphorus, Total (As P)	0.30	0.010	mg/L	1	12/2/2016 10:29:24	AM 28952

Dissolved Phosphorous

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- E Value above quantitation range

Reporting Detection Limit

- J Analyte detected below quantitation limits
- P Sample pH Not In Range

Page 11 of 22

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

161123012

Address:

4901 HAWKINS NE SUITE D

1611B75

ALBUQUERQUE, NM 87109

Project Name:

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

161123012-001

Sampling Date

11/22/2016

Date/Time Received

11/23/2016 10:45 AM

Client Sample ID

1611B75-001C / RIO GRANDE-NORTH-112116

Sampling Time

9:30 AM

Matrix

Comments

Parameter	Result	Units	MDL	PQL	Analysis Date	Analyst	Method	Qualifier
Tetrahydrofuran	ND	ug/L	0.5	0.5	12/2/2016	SAT	EPA 8260C	

Surrogate Data

Sample Number	161123012-001	*		
Surrogate	Standard	Method	Percent Recovery	Control Limits
1,2-Dichlore	obenzene-d4	EPA 8260C	97.6	70-130
4-Bromoflue	orobenzene	EPA 8260C	97.2	70-130
Toluene-d8		EPA 8260C	98.4	70-130

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

161123012

Address:

4901 HAWKINS NE SUITE D

Project Name:

1611B75

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

161123012-004

Sampling Date

11/22/2016 Date/Time Received

11/23/2016 10:45 AM

Client Sample ID

1611B75-002C / RIO GRANDE-SOUTH-112216

Sampling Time

7:00 AM

Matrix

Water

Comments

Parameter	Result	Units	MDL	PQL	Analysis Date	Analyst	Method	Qualifier
Tetrahydrofuran	ND	ug/L	0.5	0.5	12/2/2016	SAT	EPA 8260C	

Surrogate Data

Sample Number 161123012-004			
Surrogate Standard	Method	Percent Recovery	Control Limits
1,2-Dichlorobenzene-d4	EPA 8260C	98.0	70-130
4-Bromofluorobenzene	EPA 8260C	97.6	70-130
Toluene-d8	EPA 8260C	97.2	70-130

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

161123012

Address:

4901 HAWKINS NE SUITE D

Project Name:

1611B75

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

161123012-007

Sampling Date

11/22/2016

Date/Time Received 11/

11/23/2016 10:45 AM

Client Sample ID Matrix 1611B75-003A / TRIP BLANK Water

Comments

nts

Sampling	Time

Parameter	Result	Units	MDL	PQL	Analysis Date	Analyst	Method	Qualifier
Tetrahydrofuran	ND	ug/L	0.5	0.5	12/2/2016	SAT	EPA 8260C	

Surrogate Data

mple Number 161123012-007			
Surrogate Standard	Method	Percent Recovery	Control Limits
1,2-Dichlorobenzene-d4	EPA 8260C	96.8	70-130
4-Bromofluorobenzene	EPA 8260C	97.2	70-130
Toluene-d8	EPA 8260C	100.4	70-130

Authorized Signature

Todd Taruscio, Lab Manager

MCL

EPA's Maximum Contaminant Level

ND

Not Detected

PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

161123012

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1611B75

Attn:

ANDY FREEMAN

Analytical Results Report Quality Control Data

Lab Control Sample

Parameter Tetrahydrofuran **LCS Result** 8.12

Units ug/L

LCS Spike %Rec

81.2

AR %Rec 70-130

Prep Date 12/2/2016 **Analysis Date** 12/2/2016

Method Blank

Parameter Tetrahydrofuran Result ND

Units ug/L

PQL 0.5

Prep Date 12/2/2016

Analysis Date 12/2/2016

AR ND Acceptable Range

Not Detected

PQL **RPD**

Practical Quantitation Limit Relative Percentage Difference

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

161123012

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1611B75

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

161123012-002

Sampling Date

11/22/2016

Date/Time Received

Extraction Date

11/23/2016 10:45 AM

Client Sample ID Matrix

Water

1611B75-001G / RIO GRANDE-NORTH-112116 Sampling Time

9:30 AM

11/29/2016

Comments

Parameter	Result	Units	MDL	PQL	Analysis Date	Analyst	Method	Qualifier
Dieldrin	ND	ug/L	0.003	0.01	12/6/2016	MAH	EPA 608	
Benzidine	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Benzo[a]anthracene	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Benzo[a]pyrene	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Benzo[b]fluoranthene	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Benzo[k]fluoranthene	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
bis(2-Ethylhexyl)phthalate	ND	ug/L	0.2	0.5	11/29/2016	HSW	EPA 625	
Chrysene	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Dibenz[a,h]anthracene	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Dibenzofuran	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Indeno[1,2,3-cd]pyrene	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Pentachlorophenol	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	

Surrogate Data

Surrogate Standard	Method	Percent Recovery	Control Limits
DCB	EPA 608	72.4	30-130
2,4,6-Tribromophenol	EPA 625	70.0	53-122
2-Fluorobiphenyl	EPA 625	58.4	12-116
2-Fluorophenol	EPA 625	43.0	10-139
Nitrobenzene-d5	EPA 625	62.4	49-118
Phenol-d5	EPA 625	49.6	28-154
Terphenyl-d14	EPA 625	62.0	20-137

1282 Alturas Drive • Moscow, iD 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

161123012

Address:

4901 HAWKINS NE SUITE D

Project Name:

1611B75

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

161123012-005

Sampling Date

11/22/2016

Date/Time Received

Extraction Date

11/23/2016 10:45 AM

Client Sample ID Matrix

1611B75-002G / RIO GRANDE-SOUTH-112216 Water

Sampling Time

11/29/2016

Comments

7:00 AM

Parameter	Result	Units	MDL	PQL	Analysis Date	Analyst	Method	Qualifier
Dieldrin	ND	ug/L	0.003	0.01	12/6/2016	МАН	EPA 608	
Benzidine	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Benzo[a]anthracene	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Benzo[a]pyrene	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Benzo[b]fluoranthene	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Benzo[k]fluoranthene	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
bis(2-Ethylhexyl)phthalate	ND	ug/L	0.2	0.5	11/29/2016	HSW	EPA 625	
Chrysene	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Dibenz[a,h]anthracene	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Dibenzofuran	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Indeno[1,2,3-cd]pyrene	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	
Pentachlorophenol	ND	ug/L	0.1	0.5	11/29/2016	HSW	EPA 625	

Surrogate Data

mple Number 161123012-005			
Surrogate Standard	Method	Percent Recovery	Control Limits
DCB	EPA 608	75.2	30-130
2,4,6-Tribromophenol	EPA 625	115.8	53-122
2-Fluorobiphenyl	EPA 625	101.2	12-116
2-Fluorophenol	EPA 625	88.0	10-139
Nitrobenzene-d5	EPA 625	102.0	49-118
Phenol-d5	EPA 625	103.6	28-154
Terphenyl-d14	EPA 625	91.6	20-137

Authorized Signature

Todd Taruscio, Lab Manager

EPA's Maximum Contaminant Level

MCL ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory.

The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, !D 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

161123012

Address:

4901 HAWKINS NE SUITE D

Project Name:

1611B75

Address

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Analytical Results Report Quality Control Data

Lab Control Sa	mple										
Parameter		LCS Result	t Units	LCS	Spike	%Rec	AR	%Rec	Prep	Date	Analysis Date
Dieldrin		0.458	ug/L		0.5	91.6	1	0-130	11/29		12/5/2016
Pentachloropheno		6.25	ug/L		5	125.0		2-138	11/28/2016		11/30/2016
bis(2-Ethylhexyl)pl	hthalate	5.14	ug/L		5	102.8	4:	3-148	11/28	/2016	11/30/2016
Lab Control Sa	mple Duplicate										
Parameter		LCSD Result	Units	LCSD Spike	%Rec	%RPI	n .	AR %RPD	Prep D	ate A	nalysis Date
Pentachloropher	nol	5.88	ug/L	5	117.6	6.1		0-47	11/28/2		11/30/2016
bis(2-Ethylhexyl)		5.51	ug/L	5	110.2	6.9		0-50	11/28/2		11/30/2016
Matrix Spike											
Mau IX Opine			Sample	MS			MS		AR		
Sample Number	Parameter		Result	Result	Unit	s S	pike	%Rec	%Rec	Prep Date	Analysis Date
161123012-002	Pentachlorophenol		ND	6.27	ug/l		5	125.4		11/28/2016	
161123012-002	bis(2-Ethylhexyl)phthalate		ND	4.00	ug/l		5	80.0		11/28/2016	
161123012-005	Dieldrin		ND	0.505	ug/l	-	0.5	101.0	30-150	11/29/2016	12/5/2016
Matrix Spike D	uplicate										
Parameter		MSD Result	Units	MSD Spike	%R	ec %	RPD	AR %RPD	Pre	p Date	Analysis Date
Dieldrin		0.508	ug/L	0.5	10		0.6	0-30		29/2016	12/5/2016
Method Blank							_				
Parameter			Re	sult	Ur	nits		PQL	Pr	ep Date	Analysis Date
Benzidine			N	ID.	ug	g/L		0.5	11/	28/2016	11/30/2016
Benzo[a]anthrace	ne		1	1D	ug	g/L		0.5	11/	28/2016	11/30/2016
Benzo[a]pyrene			4	1D	ug	g/L		0.5	11/	28/2016	11/30/2016
Benzo[b]fluoranth	ene		1	ID OI	u	g/L		0.5	11/	28/2016	11/30/2016
Benzo[k]fluoranthe	ene		1	1D	u	g/L		0.5	11/	28/2016	11/30/2016
bis(2-Ethylhexyl)p	hthalate		1	1D	u	g/L		0.5	11/	28/2016	11/30/2016
Chrysene			1	1D	u	g/L		0.5	11/	28/2016	11/30/2016
Dibenz[a,h]anthra	cene		1	ID OI	u	g/L		0.5	11/	28/2016	11/30/2016
Dibenzofuran			١	1D	u	g/L		0.5	11/	28/2016	11/30/2016
Comments:											

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anatekiabs.ccm

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

161123012

Address:

4901 HAWKINS NE SUITE D

Project Name:

1611B75

ALBUQUERQUE, NM 87109

Attn:

ANDY FREEMAN

Analytical Results Report Quality Control Data

Method Blank		**			
Parameter	Result	Units	PQL	Prep Date	Analysis Date
Dieldrin	ND	ug/L	0.01	11/29/2016	12/5/2016
Indeno[1,2,3-cd]pyrene	ND	ug/L	0.5	11/28/2016	11/30/2016
Pentachlorophenol	ND	ug/L	0.5	11/28/2016	11/30/2016

AR

Acceptable Range

ND

Not Detected

PQL RPD Practical Quantitation Limit Relative Percentage Difference

Comments:

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

161123012

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109

Project Name:

1611B75

Attn:

ANDY FREEMAN

Analytical Results Report

Sample Number

161123012-003

Sampling Date 11/22/2016

Units

mg/L

Date/Time Received 11/23/2016 10:45 AM

Client Sample ID

Parameter

1611B75-001I / RIO GRANDE-NORTH-112116

Sampling Time 9:30 AM

Matrix

Water

Comments				

PQL	Analysis Date
5	12/7/2016 1:00:00 PM

Analyst Method **JDB** EPA 410.4

Qualifier

Sample Number

COD

161123012-006

Sampling Date

Result

16.4

1611B75-002I / RIO GRANDE-SOUTH-112216

11/22/2016

Date/Time Received 11/23/2016 10:45 AM

Sampling Time 7:00 AM

Client Sample ID Matrix

Comments

Parameter	Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
COD	23.1	mg/L	5	12/7/2016 1:00:00 PM	JDB	EPA 410.4	

Authorized Signature

Todd Taruscio, Lab Manager

MCL

EPA's Maximum Contaminant Level Not Detected

ND PQL

Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated.

Soil/solid results are reported on a dry-weight basis unless otherwise noted.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:

HALL ENVIRONMENTAL ANALYSIS LAB

Batch #:

161123012

Address:

4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109 **Project Name:**

1611B75

Attn:

ANDY FREEMAN

Analytical Results Report Quality Control Data

Lab Control Sar	mple					***************************************					
Parameter COD		LCS Result	t Unit	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		%Rec 102.0	- Drein's	%Rec 110	1 1 1 1 1	Date /2016	Analysis Date 12/7/2016
Matrix Spike			-		-100				- in		
	Parameter COD	NAME: NA	Sample Result <5	MS Result 109	Unit mg/		MS Spike 100	%Rec 109.0	AR %Rec 80-120		Analysis Date 12/7/2016
Matrix Spike Du	ıplicate			3		08		*		****	ž <u>-</u>
Parameter		MSD Result	Units	MSD Spike	%E	Rec	%RPD	AR %RPI) Pro	p Date	Analysis Date
COD		104	mg/L	100	104		4.7	0-20		7/2016	12/7/2016
Method Blank						_			3		
Parameter			Re	sult	U	nits		PQL	Pi	rep Date	Analysis Date
COD				<5	m	ıg/L		5	12	/7/2016	12/7/2016
Duplicate							-		18		
Sample Number	Parameter		Sample Result	Duplicate Result	1	Jnits	%RP	Al D %R		rep Date	Analysis Date
	COD		15.9	18.0	10.20	ng/L	12.4	7700		2/7/2016	12/7/2016

AR ND Acceptable Range

PQL

Not Detected

RPD

Practical Quantitation Limit Relative Percentage Difference

Comments:

1611B75-001H RIO GRANDE-NORTH-112116

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 11/21/16 09:30

Wet Chemistry by Method 3500Cr C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	V	date / time		101	
Hexavalent Chromium	ND		0.000500	1	11/26/2016 09:41	WG929321		

_Incorrectly labeled - 02 is for Rio Grande South

1611B75-002H RIO GRANDE-NORTH-112116

Collected date/time: 11/21/16 07:00

SAMPLE RESULTS - 02

874519

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 3500Cr C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Hexavalent Chromium	ND		0.000500	1	11/26/2016 09:52	<u>WG929321</u>

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L874519-01,02

Wet Chemistry by Method 3500Cr C-2011

Method	Blank	(MB)
--------	-------	------

Analyte

Analyte

Hexavalent Chromium

Hexavalent Chromium

Original Result DUP Result

Original Result DUP Result

ND

mg/l

L874168-02 Original Sample (OS) • Duplicate (DUP) (OS) L874168-02 11/26/16 08:24 • (DUP) R3180621-4 11/26/16 08:35

L874355-01 Original Sample (OS) • Duplicate (DUP) (OS) L874355-01 11/26/16 10:41 • (DUP) R3180621-7 11/26/16 10:49

ND

mg/l

ND

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

Dilution DUP RPD

Dilution DUP RPD

0.000

0.000

(LCS) R3180621-2 11/26/16 07:49 • (LCSD) R3180621-3 11/26	16 07:57
---	----------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%	2		%	%
Hexavalent Chromium	0.00200	0.00205	0.00205	102	103	90.0-110	2 8		0.000	20

DUP Qualifier

DUP Qualifier

DUP RPD Limits

DUP RPD Limits

20

L874357-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L874357-0	1 11/26/16 08:43 · (MS	R3180621-5	11/26/16 08:51 · (N	ASD) R3180621-6	11/26/16 09:00
----------------	------------------------	------------	---------------------	-----------------	----------------

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/I	mg/l	mg/l	%	%		%			%	%
Hexavalent Chromium	0.0500	ND	0.0521	0.0505	104	101	1	90.0-110		8.974	3.00	20

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:

1611B75

Pace Project No.:

30203584

Sample: 1611B75-001J Rio Grande-

Lab ID: 30203584001

Collected: 11/21/16 09:30 Received: 11/23/16 11:00

PWS:

Site ID:

Sample Type:

Comments: • The sampler's name and signature were not listed on the COC.

Parameters

Method

Act ± Unc (MDC) Carr Trac

Units

Analyzed

CAS No.

Qual

Qual

Gross Alpha

EPA 900.0

3.11 ± 0.884 (0.826)

pCi/L

12/07/16 20:06 12587-46-1

Sample: 1611B75-002J Rio Grande-

Lab ID: 30203584002

Collected: 11/22/16 07:00

Received: 11/23/16 11:00 Matrix: Water

PWS:

South-

Site ID:

Sample Type:

Parameters

Method

Act ± Unc (MDC) Carr Trac

Units

Analyzed

CAS No.

Gross Alpha

EPA 900.0

7.26 ± 1.94 (1.74)

pCi/L

12/07/16 20:06 12587-46-1

C:NA T:NA

C:NA T:NA

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL - RADIOCHEMISTRY

Project:

1611B75

Pace Project No.:

30203584

QC Batch:

242010

Analysis Method:

EPA 900.0

QC Batch Method:

EPA 900.0

Analysis Description:

900.0 Gross Alpha/Beta

Associated Lab Samples:

30203584001, 30203584002

METHOD BLANK: 1189267

Matrix: Water

Associated Lab Samples:

30203584001, 30203584002

Parameter

Act ± Unc (MDC) Carr Trac

Units

Analyzed

Qualifiers

Gross Alpha

-0.349 ± 0.368 (1.13) C:NA T:NA

pCi/L

12/07/16 19:54

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project:

1611B75

Pace Project No.:

30203584

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Date: 12/08/2016 11:45 AM

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

an affiliate of The GEL Group INC

3306 Kitty Hawk Road, Suite 120 Wilmington, NC 28405 P 910.795.0421

www.capefearanalytical.com

December 21, 2016

Mr. Andy Freeman Hall Environmental 4901 Hawkins NE Suite D Albuquerque, New Mexico 87109

Re: 1668A Water Work Order: 10146 SDG: 1611B75

Dear Mr. Freeman:

Cape Fear Analytical LLC (CFA) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on November 29, 2016 and November 30, 2016. This original data report has been prepared and reviewed in accordance with CFA's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at 910-795-0421.

Cyride Larking

Sincerely,

Cynde Larkins Project Manager

Enclosures

HALL
ENVIRONMENTAL
ANALYSIS
LABORATORY

CHAIN	UF	CUSTO	JUY	KECU	KD	1	1

riau Environmental Analysis Laboratory 4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975

FAX: 505-345-4107
Website: www.hallenvironmental.com

SUB C	ONTRATOR: Cape	Fear Analytical COMPANY:	Cape Fear Analyti	cal	PHONE:	PHONE: (910) 795-0421 FAX:				
ADDRESS: 3306 Kitty Hawk Rd Ste 120							EMAIL:			
CITY,	STATE, ZIP: Wilmi	ngton, NC 28405								
ITEM	I SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS	ANALYTICAL COMMENTS			
1	1611B75-001L	Rio Grande-North-112116	1LAmber	Aqueous	11/21/2016 9:30:00 AM	1 PCB Congeners				
2	1611B75-002M	Rio Grande-South-112216	1LAmber	Aqueous	11/22/2016 7:00:00 AM	1 PCB Congeners	boken in			

Please include the LAB ID		SAMPLE ID o	n all final reports. Please e-mail resu	ults to lab@h	alfenvironmental.co	om. Please return all coolers and blue ice. Thank you.
elinquished By:	Date: 11/22/2016	Time: [0:11 AM		Control of the second of the second	2016 10:25	REPORT TRANSMITTAL DESIRED: HARDCOPY (extra cost)
elinquished By:	Date:	Time:	Received By: Received By:	Date:	Time:	FOR LAB USE ONLY
TAT:	Standard 🗍	RUSH	Next BD 2nd BD 1	3rd B	D□	Temp of samples C Attempt to Cool ?

1867 broken

SAMPLE RECEIPT CHECKLIST

Cape Fear Analytical

Clie	nt: HALL				Work Order: 10146
Ship	pping Company: Fed EX				Date/Time Received: 29 No v 2016 10:25
	pected Hazard Information	Yes	NA	No	DOE Site Sample Packages Yes NA No*
	ped as DOT Hazardous? ples Identified as Foreign Soil?		No.		Screened < 0.5 mR/hr? Samples < 2x background?
			12 VE-003		* Notify RSO of any responses in this column immediately.
	Sample Receipt Specifics sample in shipment?	Yes	NA	No	Air Witness:
	Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (required for Non-Conforming Items)
	Shipping containers received intact				Circle Applicable: seals broken damaged container leaking container other(describe)
	and sealed?	_			,
2	Chain of Custody documents included with shipment?				
\vdash			10.000.00		Preservation Method:
3	Samples requiring cold preservation within 0-6°C?	_			ice bags bitteled dry ice none other (describe) 3.0 C
4	Aqueous samples found to have visible solids?	1			Sample (Ds, containers affected:
					Sample IDs, containers affected and pH observed:
5	Samples requiring chemical preservation at proper pH?		_	_	DH=7 If preservative added; Loth:
6	Samples requiring preservation have no residual chlorine?				Sample IDs, containers affected:
7	Samples received within holding time?				If preservative added, Lot#: Sample IDs, tests affected:
Ľ	Samples received within folding times				
8	Sample IDs on COC match IDs on containers?	1	7		Sample IDs, containers affected:
9	Date & time of COC match date & time on containers?	U	_		Sample IDs, containers affected:
10	Number of containers received match number indicated on COC?	٠.		L	List type and number of containers/Sample IDs, containers affected: Sample -002M briken in transit I-1L WMA For -001L
11	COC form is properly signed in relinquished/received sections?				
Cor	nments:				
	*				
	ā				
			3		8
					3 00 87
			- AWA		1605
	Checklist performed	by: I	nitials	5:	MJD Date: 29 NOVZALC CF-UD-F-

SAMPLE RECEIPT CHECKLIST Cape Fear Analytical

Clie	ent: HALL				Work Order: 10146	
Shi	pping Company: Fed EX				Date/Time Received: 30 NO V 7016 10:45	
-	pected Hazard Information	Yes	NA	No	DOE Site Sample Packages Yes NA No*	
_	pped as DOT Hazardous? nples identified as Foreign Soil?			<u> </u>	Screened <0.5 mR/hr? Samples < 2x background?	
					* Notify RSO of any responses in this column immediately.	
	Sample Receipt Specifics sample in shipment?	Yes	NA	No	Air Witness:	
	Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (required for Non-Conforming Items)	
1	Shipping containers received intact and sealed?	-	4	-3	Circle Applicable: seals broken damaged container leaking container other(describe)	
2	Chain of Custody documents included with shipment?	ton	3	/	No COC sent with replacement sample. Original COC was used for verification	
3	Samples requiring cold preservation within 0-6°C?	/	-		Preservation described: (ce bags (Nue ice dry ice none other (describe)) 4.2+0.1=4.3°C	
4	Aqueous samples found to have visible solids?	_			Sample IDs, containers affected:	
5	Samples requiring chemical preservation at proper pH?		J	_	Sample IDs, containers affected and pH observed: If presentative added, Lotif:	
6	Samples requiring preservation have no residual chlorine?	L	_		Sample IDs, containers affected: If preservative added, Lot#:	
7	Samples received within holding time?	L			Sample IDs, tests affected:	
8	Sample IDs on COC match IDs on containers?	-	_		Sample IDs, containers affected:	
9	Date & time of COC match date & time on containers?	_	-		Sample IDs, containers affected:	
10	Number of containers received match number indicated on COC?	_	<u> </u>		List type and number of containers / Sample IDs, containers affected: $I-1LWMH$	
11	Irelinguished/received sections?	,				
Co	**************************************	lev	14	(Sample for broken original	
	Teceived 29 Nov16.					
L_					N. 73	
	Checklist performed	hu I	nitiale		MIO Date: 27 ADV 2016 CF-UD-F-7	

Anne Thorne

From:

Cynde Larkins < cynde.larkins@cfanalytical.com>

Sent:

Tuesday, November 29, 2016 1:30 PM

To: Cc: Anne Thorne

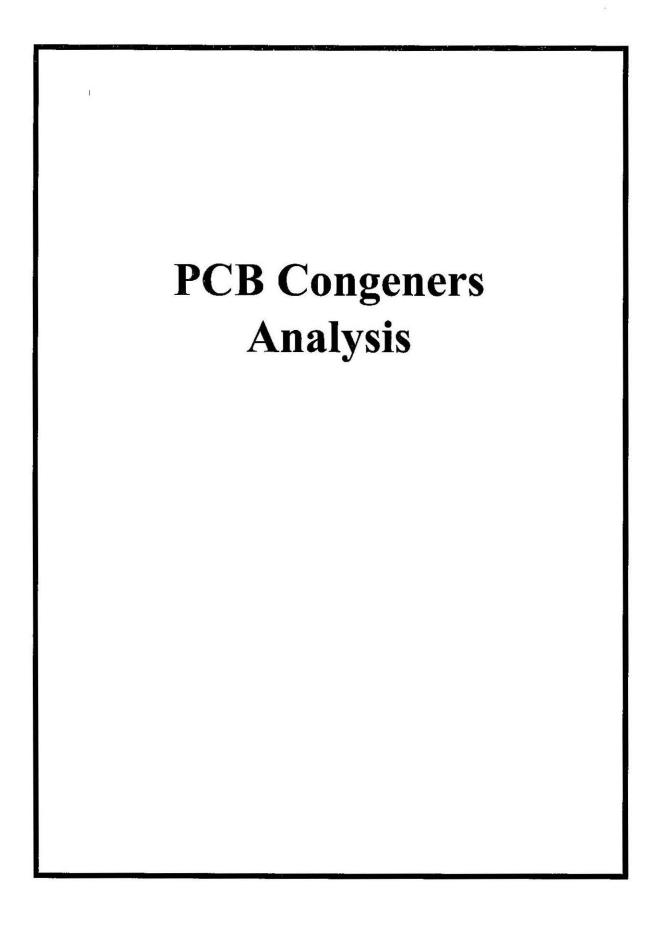
Melissa O'Dorisio

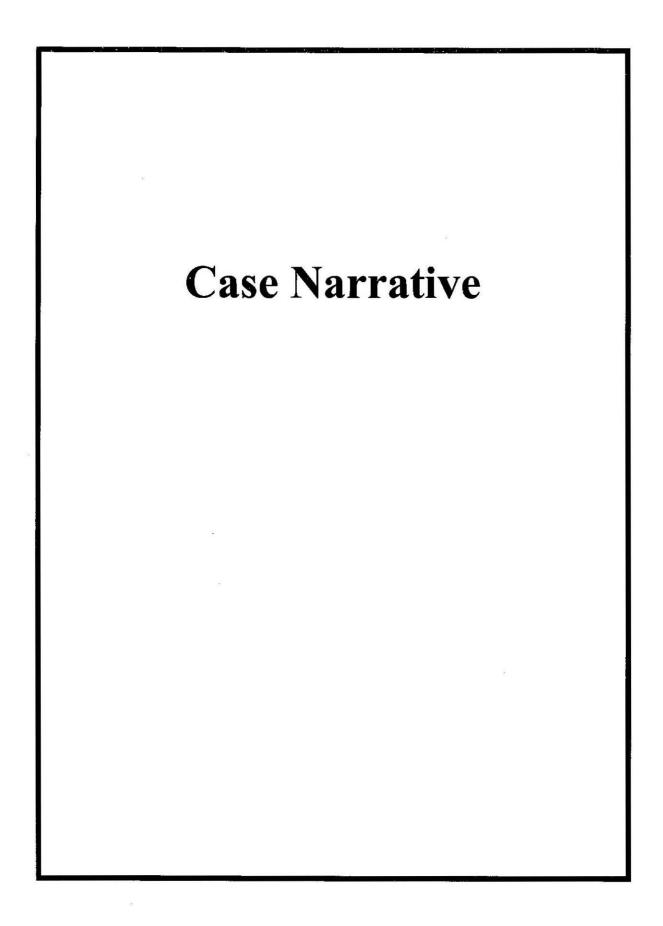
Subject:

1611B75

Anne,

One of the sample containers we received today at CFA was broken in transit: 1611B75-002M Rio Grande-South-112216. Do you have a replacement sample you could send us?


Thanks,


WO# 10146

Cynde Larkins Project Manager Cape Fear Analytical, LLC 3306 Kitty Hawk Road Suite 120 Wilmington, NC 28405 (910) 795-0421

Cape Fear Analytical will be closed for Christmas on Monday, December 26, 2016 and New Year's on Monday, January 2, 2017. For sample receiving hours during the holidays please contact the lab.

CONFIDENTIALITY NOTICE: This e-mail and any files transmitted with it are the property of The GEL Group, Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by The GEL Group, Inc. and its affiliates.

PCBC Case Narrative Hall Environmental Analysis Laboratory (HALL) SDG 1611B75 Work Order 10146

Method/Analysis Information

Product: PCB Congeners by EPA Method 1668A in Liquids

Analytical Method: EPA Method 1668A

Extraction Method: SW846 3520C

Analytical Batch Number: 33561 Clean Up Batch Number: 33560 Extraction Batch Number: 33559

Sample Analysis

The following samples were analyzed using the analytical protocol as established in EPA Method 1668A:

Sample ID	Client ID
10146001	1611B75-001L Rio Grande-North-112116
10146002	1611B75-002L Rio Grande-South-112116
12017564	Method Blank (MB)
12017565	Laboratory Control Sample (LCS)
12017566	Laboratory Control Sample Duplicate (LCSD)

The samples in this SDG were analyzed on an "as received" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by Cape Fear Analytical LLC (CFA) as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with CF-OA-E-003 REV# 6.

Raw data reports are processed and reviewed by the analyst using the TargetLynx software package.

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this sample delivery group (SDG).

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (ICV or CCV) met the acceptance criteria.

Quality Control (QC) Information

Certification Statement

The test results presented in this document are certified to meet all requirements of the 2009 TNI Standard.

Method Blank (MB) Statement

The MB(s) analyzed with this SDG met the acceptance criteria.

Surrogate Recoveries

All surrogate recoveries were within the established acceptance criteria for this SDG.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Laboratory Control Sample Duplicate (LCSD) Recovery

The LCSD spike recoveries met the acceptance limits.

LCS/LCSD Relative Percent Difference (RPD) Statement

The RPD(s) between the LCS and LCSD met the acceptance limits.

QC Sample Designation

A matrix spike and matrix spike duplicate analysis was not required for this SDG.

Technical Information

Holding Time Specifications

CFA assigns holding times based on the associated methodology, which assigns the date and time from sample collection. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this SDG did not require dilutions.

Sample Re-extraction/Re-analysis

Re-extractions or re-analyses were not required in this SDG.

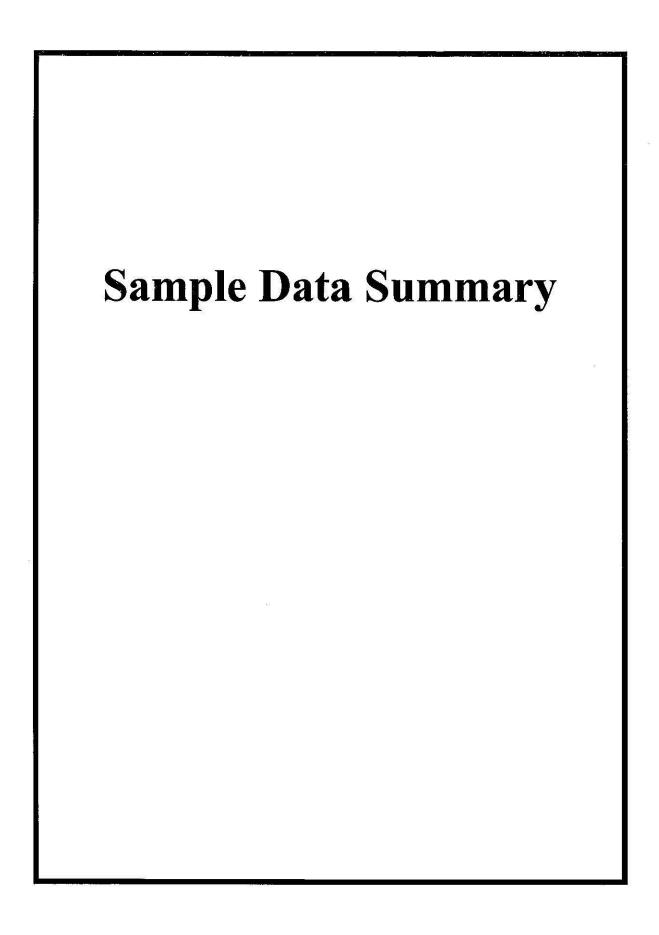
Miscellaneous Information

Nonconformance (NCR) Documentation

A NCR was not required for this SDG.

Manual Integrations

Manual integrations were required for data files in this SDG. Certain standards and QC samples required manual integrations to correctly position the baseline as set in the calibration standard injections. Where manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this fraction.


System Configuration

This analysis was performed on the following instrument configuration:

Instrument ID Instrument System Configuration Column ID Column Description
HRP791 1 PCB Analysis PCB Analysis SPB-Octyl 30m x 0.25mm, 0.25um

Electronic Packaging Comment

This data package was generated using an electronic data processing program referred to as virtual packaging. In an effort to increase quality and efficiency, the laboratory has developed systems to generate all data packages electronically. The following change from traditional packages should be noted: Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative will include the data validator's signature and title. The signature page also includes the data qualifiers used in the fractional package. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

Cape Fear Analytical, LLC

3306 Kitty Hawk Road Suite 120, Wilmington, NC 28405 - (910) 795-0421 - www.capefearanalytical.com

Certificate of Analysis Report for

HALL001 Hall Environmental Analysis Laboratory Client SDG: 1611B75 CFA Work Order: 10146

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- B The target analyte was detected in the associated blank.
- C Congener has coeluters. When Cxxx, refer to congener number xxx for data
- J Value is estimated
- U Analyte was analyzed for, but not detected above the specified detection limit.

Review/Validation

Cape Fear Analytical requires all analytical data to be verified by a qualified data reviewer.

The following data validator verified the information presented in this case narrative:

Signature: Heather Patterson

Date: 21 DEC 2016 Title: Group Leader

SDG Number:

Client Sample:

Lab Sample ID:

of 8

Page 1

PCB Congeners Certificate of Analysis Sample Summary

HALL001

Project: **HALL00114** Matrix: WATER

Client ID:	1611B75-001L Rio Grande-North-11
Batch ID:	33561
Dun Date	12/16/2016 17:07

Method: EPA Method 1668A Analyst:

Client:

Date Collected:

Date Received:

Prep Method:

As Received Prep Basis: Instrument: **HRP791**

Data File: c16dec16a-8 33559 Prep Batch:

1611B75

10146001

1668A Water

MJC

SW8463520C

11/21/2016 09:30

11/29/2016 10:25

Dilution: Prep SOP Ref: CF-OA-E-001

Prep Aliquot: 917 mL Prep Date: 13-DEC-16

CAS No. Qual Result Units MDL PQL **Parmname** 2051-60-7 7.37 1-MoCB U ND pg/L 21.8 2051-61-8 2-MoCB U ND pg/L 7.26 21.8 2051-62-9 3-MoCB U ND pg/L 7.26 21.8 7.33 21.8 4-DiCB H ND 13029-08-8 pg/L 16605-91-7 5-DiCB U ND 8.38 21.8 pg/L 7.90 ND 21.8 25569-80-6 6-DiCB U pg/L 33284-50-3 7-DiCB U ND pg/L 7.26 21.8 34883-43-7 8-DiCB U ND 7.74 21.8 pg/L 7.26 21.8 34883-39-1 9-DiCB U ND pg/L 7.26 21.8 10-DiCB U ND 33146-45-1 pg/L 12.5 109 2050-67-1 11-DiCB J 41.8 pg/L 2974-92-7 12-DiCB CU ND pg/L 14.5 43.6 13-DiCB C12 2974-90-5 34883-41-5 14-DiCB U ND pg/L 7.26 21.8 pg/L 15-DiCB J 12.0 7.26 21.8 2050-68-2 38444-78-9 16-TrCB U ND pg/L 8.79 21.8 17-TrCB U ND 7.26 21.8 37680-66-3 pg/L 37680-65-2 18-TrCB CU ND pg/L 14.5 43.6 pg/L 21.8 38444-73-4 19-TrCB U ND 7.26 38444-84-7 20-TrCB CU ND 14.5 43.6 pg/L 21-TrCB CU ND 14.5 43.6 55702-46-0 pg/L 38444-85-8 22-TrCB U ND 7.26 21.8 pg/L 7.26 21.8 55720-44-0 23-TrCB IJ ND pg/L 24-TrCB ND 7.26 21.8 55702-45-9 U pg/L 25-TrCB ND 7.26 21.8 55712-37-3 U pg/L CU 14.5 43.6 38444-81-4 26-TrCB ND pg/L 21.8 7.26 38444-76-7 27-TrCB U ND pg/L 7012-37-5 28-TrCB C20 15862-07-4 29-TrCB C26 35693-92-6 30-TrCB C18 16606-02-3 31-TrCB U ND pg/L 7.26 21.8 pg/L 38444-77-8 32-TrCB U ND 7.26 21.8

- The target analyte was detected in the associated blank.
- C Congener has coeluters. When Cxxx, refer to congener number xxx for data
- U Analyte was analyzed for, but not detected above the specified detection limit.

of 8

PCB Congeners Certificate of Analysis Sample Summary

HALL001

Project: HALL00114 Matrix: WATER

Client Sample:	1668A Water	
Client ID:	1611B75-001L	Rio Grande-North-11
Ratch ID:	22561	

Method: Analyst:

Client:

Date Collected:

Date Received:

11/21/2016 09:30 11/29/2016 10:25

Prep Basis:

Page 2

Batch ID: 33561 Run Date:

Lab Sample ID: 10146001

12/16/2016 17:07 c16dec16a-8

EPA Method 1668A MJC

Instrument: Dilution:

As Received **HRP791**

Data File: Prep Batch:

SDG Number:

1611B75

SW846 3520C

Prep SOP Ref: CF-OA-E-001

Prep Batch: Prep Date:	33559 13-DEC-16	Prep Method: Prep Aliquot:	SW846 3520C 917 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	MDL	PQL	
38444-86-9	33-TrCB	C21					
37680-68-5	34-TrCB	U	ND	pg/L	7.26	21.8	
37680-69-6	35-TrCB	U	ND	pg/L	7.26	21.8	
38444-87-0	36-TrCB	U	ND	pg/L	7.26	21.8	
38444-90-5	37-TrCB	U	ND	pg/L	7.26	21.8	
53555-66-1	38-TrCB	U	ND	pg/L	7.26	21.8	
38444-88-1	39-TrCB	U	ND	pg/L	7.26	21.8	
38444-93-8	40-TeCB	CU	ND	pg/L	14.5	43.6	
52663-59-9	41-TeCB	U	ND	pg/L	7.26	21.8	
36559-22-5	42-TeCB	U	ND	pg/L	7.26	21.8	
70362-46-8	43-TeCB	U	ND	pg/L	7.26	21.8	
41464-39-5	44-TeCB	CU	ND	pg/L	21.8	65.4	
70362-45-7	45-TeCB	CU	ND	pg/L	14.5	43.6	
41464-47-5	46-TeCB	U	ND	pg/L	7.26	21.8	
2437-79-8	47-TeCB	C44					
70362-47-9	48-TeCB	U	ND	pg/L	7.26	21.8	
41464-40-8	49-TeCB	CU	ND	pg/L	14.5	43.6	
62796-65-0	50-TeCB	CU	ND	pg/L	14.5	43.6	
68194-04-7	51-TeCB	C45					
35693-99-3	52-TeCB	1	7.33	pg/L	7.26	21.8	
41464-41-9	53-TeCB	C50					
15968-05-5	54-TeCB	U	ND	pg/L	7.26	21.8	
74338-24-2	55-TeCB	υ	ND	pg/L	7.26	21.8	
41464-43-1	56-TeCB	U	ND	pg/L	7.26	21.8	
70424-67-8	57-TeCB	U	ND	pg/L	7.26	21.8	
41464-49-7	58-TeCB	U	ND	pg/L	7.26	21.8	
74472-33-6	59-TeCB	CU	ND	pg/L	21.8	65.4	
33025-41-1	60-TeCB	U	ND	pg/L	7.26	21.8	
33284-53-6	61-TeCB	CU	ND	pg/L	29.0	87.2	
54230-22-7	62-TeCB	C59					
74472-34-7	63-TeCB	U	ND	pg/L	7.26	21.8	
52663-58-8	64-TeCB	U	ND	pg/L	7.26	21.8	

- The target analyte was detected in the associated blank.
- \mathbf{C} Congener has coeluters. When Cxxx, refer to congener number xxx for data
- Analyte was analyzed for, but not detected above the specified detection limit. U

Report Date: December 21, 2016

of 8

PCB Congeners
Certificate of Analysis
Sample Summary

HALL00114 Project: WATER

10146001 1668A Water Client Sample: Client ID: 1611B75-001L Rio Grande-North-11

1611B75

Client: Date Collected: Date Received:

HALL001 11/21/2016 09:30 11/29/2016 10:25

Matrix:

Page 3

Batch ID:

SDG Number:

Prep Batch:

Lab Sample ID:

Method:

Prep Method:

EPA Method 1668A

Prep Basis:

7.26

pg/L

21.8

As Received

Run Date: Data File:

12/16/2016 17:07 c16dec16a-8 33559

Analyst: MJC

SW846 3520C

Instrument: **HRP791** Dilation:

Prep SOP Ref: CF-OA-E-001

Prep Date:	13-DEC-16	Prep Aliquot:	917 mL			
CAS No.	Parmname	Qual	Result	Units	MDL	PQL
33284-54-7	65-TeCB	C44	190			
32598-10-0	66-TeCB	U	ND	pg/L	7.26	21.8
73575-53-8	67-TeCB	U	ND	pg/L	7.26	21.8
73575-52-7	68-TeCB	U	ND	pg/L	7.26	21.8
60233-24-1	69-TeCB	C49				
32598-11-1	70-TeCB	C61				
41464-46-4	71-TeCB	C40				
41464-42-0	72-TeCB	U	ND	pg/L	7.26	21.8
74338-23-1	73-ТеСВ	U	ND	pg/L	7.26	21.8
32690-93-0	74-TeCB	C61				
32598-12-2	75-TeCB	C59				
70362-48-0	76-TeCB	C61				
32598-13-3	77-TeCB	U	ND	pg/L	7.26	21.8
70362-49-1	78-TeCB	U	ND	pg/L	7.26	21.8
41464-48-6	79-TeCB	U	ND	pg/L	7.26	21.8
33284-52-5	80-TeCB	U	ND	pg/L	7.26	21.8
70362-50-4	81-TeCB	U	ND	pg/L	7.26	21.8
52663-62-4	82-PeCB	U	ND	pg/L	7.26	21.8
60145-20-2	83-PeCB	U	ND	pg/L	7.26	21.8
52663-60-2	84-PeCB	U	ND	pg/L	7.26	21.8
65510-45-4	85-PeCB	CU	ND	pg/L	21.8	65.4
55312-69-1	86-PeCB	CU	ND	pg/L	43.6	131
38380-02-8	87-PeCB	C86				
55215-17-3	88-PeCB	CU	ND	pg/L	14.5	43.6
73575-57-2	89-PeCB	U	ND	pg/L	7.26	21.8
68194-07-0	90-PeCB	CU	ND	pg/L	21.8	65.4
68194-05-8	91-PeCB	C88				
52663-61-3	92-PeCB	U	ND	pg/L	7.26	21.8
73575-56-1	93-PeCB	CU	ND	pg/L	14.5	43.6
73575-55-0	94-PeCB	U	ND	pg/L	7.26	21.8
38379-99-6	95-PeCB	U	ND	pg/L	7.26	21.8

U

ND

73575-54-9 Comments:

- The target analyte was detected in the associated blank.
- C Congener has coeluters. When Cxxx, refer to congener number xxx for data
- Value is estimated

96-PeCB

Analyte was analyzed for, but not detected above the specified detection limit. U

of 8

Page 4

PCB Congeners
Certificate of Analysis
Sample Summary

SDG Number Lab Sample I Client Sample	D: 10146001	Client: Date Collected: Date Received:	HALL001 11/21/2016 09:30 11/29/2016 10:25		Project: Matrix:	HALL00114 WATER
Client ID:	1611B75-001L Rio Grande-North-11	Date Received	11/2//2010 10120		Prep Basis:	As Received
Batch ID: Run Date:	33561 12/16/2016 17:07	Method: Analyst:	EPA Method 1668A MJC		Instrument:	HRP791
Data File: Prep Batch: Prep Date:	c16dec16a-8 33559 13-DEC-16	Prep Method: Prep Aliquot:	SW846 3520C 917 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001
CAS No.	Parmname	Qual	Result	Units	MDL	PQL
41464-51-1	97-PeCB	C86				
60233-25-2	98-PeCB	CU	ND	pg/L	14.5	43.6
38380-01-7	99-PeCB	U	ND	pg/L	7.26	21.8
39485-83-1	100-PeCB	C93				
37680-73-2	101-PeCB	C90				
68194-06-9	102-PeCB	C98				
60145-21-3	103-PeCB	U	ND	pg/L	7.26	21.8
56558-16-8	104-PeCB	U	ND	pg/L	7.26	21.8
32598-14-4	105-PeCB	U	ND	pg/L	7.26	21.8
70424-69-0	106-PeCB	U	ND	pg/L	7.26	21.8
70424-68-9	107-PeCB	υ	ND	pg/L	7.26	21.8
70362-41-3	108-PeCB	CU	ND	pg/L	14.5	43.6
74472-35-8	109-PeCB	C86				
38380-03-9	110-PeCB	CU	ND	pg/L	14.5	43.6
39635-32-0	111-PeCB	U	ND	pg/L	7.26	21.8
74472-36-9	112-PeCB	U	ND	pg/L	7.26	21.8
68194-10-5	113-PeCB	C90				
74472-37-0	114-PeCB	U	ND	pg/L	7.26	21.8
74472-38-1	115-PeCB	C110				
18259-05-7	116-PeCB	C85				
68194-11-6	117-PeCB	C85				
31508-00-6	118-PeCB	U	ND	pg/L	7.26	21.8
56558-17-9	119-PeCB	C86				
68194-12-7	120-PeCB	υ	ND	pg/L	7.26	21.8
56558-18-0	121-PeCB	U	ND	pg/L	7.26	21.8
76842-07-4	122-PeCB	U	ND	pg/L	7.26	21.8
65510-44-3	123-PeCB	U	ND	pg/L	7.26	21.8
70424-70-3	124-PeCB	C108				
74472-39-2	125-PeCB	C86				
57465-28-8	126-PeCB	U	ND	pg/L	7.26	21.8
39635-33-1	127-PeCB	U	ND	pg/L	7.26	21.8
	managed Appendix		23427		574.747	72.3

CU

ND

pg/L

14.5

43.6

Comments:

38380-07-3

- B The target analyte was detected in the associated blank.
- C Congener has coeluters. When Cxxx, refer to congener number xxx for data
- J Value is estimated

128-HxCB

U Analyte was analyzed for, but not detected above the specified detection limit.

of 8

PCB Congeners Certificate of Analysis Sample Summary

Project: HAI

HALL00114 .

Page 5

Client Sample: 1668

1611B75 10146001 1668A Water Client: Date Collected: Date Received:

Prep Aliquot:

HALL001 ted: 11/21/2016 09:30 red: 11/29/2016 10:25

Matrix:

WATER

Client ID:

SDG Number:

Lab Sample ID:

1611B75-001L Rio Grande-North-11

Batch ID: 33561 Run Date: 12/16/

33561 Method: 12/16/2016 17:07 Analyst: EPA Method 1668A MJC

Instrument:

Prep Basis:

As Received HRP791

Data File: Prep Batch: Prep Date: 12/16/2016 17:0 c16dec16a-8 33559

Prep Method: SV

SW846 3520C

917 mL

Dilution: 1
Prep SOP Ref: C

Prep SOP Ref: CF-OA-E-001

21.8

Prep Date: 13-DEC-16

CAS No.	Parmname	Qual	Result	Units	MDL	PQL	
55215-18-4	129-HxCB	CU	ND	pg/L	21.8	65.4	
52663-66-8	130-НхСВ	U	ND	pg/L	7.26	21.8	
61798-70-7	131-НхСВ	υ	ND	pg/L	7.26	21.8	
38380-05-1	132-HxCB	U	ND	pg/L	13.9	21.8	
35694-04-3	133-HxCB	U	ND	pg/L	7.26	21.8	
52704-70-8	134-HxCB	U	ND	pg/L	7.33	21.8	
52744-13-5	135-HxCB	cu	ND	pg/L	14.5	43.6	
38411-22-2	136-HxCB	υ	ND	pg/L	7.26	21.8	
35694-06-5	137-HxCB	υ	ND	pg/L	7.26	21.8	
35065-28-2	138-HxCB	C129					
56030-56-9	139-HxCB	CU	ND	pg/L	14.5	43.6	
59291-64-4	140-HxCB	C139					
52712-04-6	141-HxCB	U	ND	pg/L	7.26	21.8	
41411-61-4	142-HxCB	U	ND	pg/L	7.26	21.8	
68194-15-0	143-HxCB	U	ND	pg/L	7.26	21.8	
68194-14-9	144-HxCB	U	ND	pg/L	7.26	21.8	
74472-40-5	145-HxCB	U	ND	pg/L	7.26	21.8	
51908-16-8	146-HxCB	U	ND	pg/L	7.26	21.8	
68194-13-8	147-HxCB	CU	ND	pg/L	14.5	43.6	
74472-41-6	148-HxCB	U	ND	pg/L	7.26	21.8	
38380-04-0	149-HxCB	C147					
68194-08-1	150-HxCB	U	ND	pg/L	7.26	21.8	
52663-63-5	151-HxCB	C135					
68194-09-2	152-HxCB	U	ND	pg/L	7.26	21.8	
35065-27-1	153-HxCB	CU	ND	pg/L	14.5	43.6	
60145-22-4	154-HxCB	υ	ND	pg/L '	7.26	21.8	
33979-03-2	155-HxCB	U	ND	pg/L	7.26	21.8	
38380-08-4	156-HxCB	CU	ND	pg/L	14.5	43.6	
69782-90-7	157-HxCB	C156					
74472-42-7	158-HxCB	U	ND	pg/L	7.26	21.8	
39635-35-3	159-HxCB	U	ND	pg/L	7.26	21.8	

ND

U

pg/L

7.26

Comments:

41411-62-5

- B The target analyte was detected in the associated blank.
- C Congener has coeluters. When Cxxx, refer to congener number xxx for data
- J Value is estimated

160-HxCB

U Analyte was analyzed for, but not detected above the specified detection limit.

Lab Sample ID: 10146001

SDG Number:

Report Date: December 21, 2016

of 8

PCB Congeners Certificate of Analysis Sample Summary

Project: HALL00114 WATER Matrix:

Client Sample:	1668A Water	
Client ID:	1611B75-001L	Rio Grande-North-1

1611B75

Batch ID: 33561

Run Date: 12/16/2016 17:07 Data File: c16dec16a-8

Method: Analyst: MJC

Date Collected:

Date Received:

Client:

EPA Method 1668A

11/21/2016 09:30

11/29/2016 10:25

Prep Basis:

As Received

Page 6

Instrument: **HRP791** Dilution:

Data File: Prep Batch: Prep Date:	c16dec16a-8 33559 13-DEC-16	Prep Method: Prep Aliquot:	SW846 3520C 917 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	MDL	PQL	
74472-43-8	161-HxCB	U	ND	pg/L	7.26	21,8	
39635-34-2	162-HxCB	U	ND	pg/L	7.26	21.8	
74472-44-9	163-HxCB	C129					
74472-45-0	164-HxCB	U	ND	pg/L	7.26	21.8	
74472-46-1	165-HxCB	U	ND	pg/L	7.26	21.8	
41411-63-6	166-HxCB	C128		0.00			
52663-72-6	167-HxCB	U	ND	pg/L	7.26	21.8	
59291-65-5	168-HxCB	C153					
32774-16-6	169-HxCB	U	ND	pg/L	7.26	21.8	
35065-30-6	170-HpCB	U	ND	pg/L	7.26	21.8	
52663-71-5	171-HpCB	cu	ND	pg/L	14.5	43.6	
52663-74-8	172-HpCB	U	ND	pg/L	7.26	21.8	
68194-16-1	173-НрСВ	C171					
38411-25-5	174-НрСВ	υ	ND	pg/L	7.26	21.8	
40186-70-7	175-HpCB	U	ND	pg/L	7.26	21.8	
52663-65-7	176-HpCB	U	ND	pg/L	7.26	21.8	
52663-70-4	177-HpCB	, U	ND	pg/L	7.26	21.8	
52663-67-9	178-HpCB	U	ND	pg/L	7.26	21.8	
52663-64-6	179-H _P CB	U	ND	pg/L	7.26	21.8	
35065-29-3	180-HpCB	CU	ND	pg/L	14.5	43.6	
74472-47-2	181-HpCB	U	ND	pg/L	7.26	21.8	
60145-23-5	182-HpCB	U	ND	pg/L	7.26	21.8	
52663-69-1	183-HpCB	CU	ND	pg/L	14.5	43.6	
74472-48-3	184-HpCB	U	ND	pg/L	7.26	21.8	
52712-05-7	185-HpCB	C183					
74472-49-4	186-HpCB	U	ND	pg/L	7.26	21.8	
52663-68-0	187-HpCB	U	ND	pg/L	7.26	21.8	
74487-85-7	188-HpCB	U	ND	pg/L	7.26	21.8	
39635-31-9	189-НрСВ	U	ND	pg/L	7.26	21.8	
41411-64-7	190-HpCB	U	ND	pg/L	7.26	21.8	
74472-50-7	191-HpCB	U	ND	pg/L	7.26	21.8	
74472-51-8	192-HpCB	U	ND	pg/L	7.26	21.8	

- The target analyte was detected in the associated blank. B
- \mathbf{C} Congener has coeluters. When Cxxx, refer to congener number xxx for data
- Value is estimated
- Analyte was analyzed for, but not detected above the specified detection limit.

PCB Congeners Page 7 of 8 Certificate of Analysis Sample Summary SDG Number: 1611B75 Client: HALL001 Project: HALL00114 11/21/2016 09:30 Lab Sample ID: 10146001 Date Collected: Matrix: WATER 1668A Water 11/29/2016 10:25 Client Sample: Date Received: Client ID: 1611B75-001L Rio Grande-North-11 Prep Basis: As Received Batch ID: 33561 Method: EPA Method 1668A Run Date: 12/16/2016 17:07 MJC Instrument: **HRP791** Analyst: Dilution: Data File: c16dec16a-8 Prep SOP Ref: CF-OA-E-001 Prep Method: SW846 3520C Prep Batch: 33559 Prep Date: Prep Aliquot: 917 mL 13-DEC-16 CAS No. Qual Result Units MDL **PQL Parmname** 69782-91-8 193-HpCB C180 35694-08-7 194-OcCB U ND pg/L 7.26 21.8 52663-78-2 195-OcCB U ND 7.26 21.8 pg/L 42740-50-1 196-OcCB U 7.26 21.8 ND pg/L 33091-17-7 197-OcCB CU ND 14.5 43.6 pg/L 68194-17-2 198-OcCB CU ND pg/L 14.5 43.6 52663-75-9 199-OcCB C198 52663-73-7 200-OcCB C197 40186-71-8 201-OcCB U ND pg/L 7.26 21.8 2136-99-4 202-OcCB U 7.26 21.8 ND pg/L U 52663-76-0 203-OcCB ND 7.26 21.8 pg/L 74472-52-9 204-OcCB U ND pg/L 7.26 21.8 205-OcCB U pg/L 7.26 21.8 74472-53-0 ND 40186-72-9 206-NoCB U ND pg/L 7.26 21.8 207-NoCB U ND 7.26 21.8 52663-79-3 pg/L 52663-77-1 208-NoCB U ND pg/L 7.26 21.8 209-DeCB U 7.26 21.8 2051-24-3 ND pg/L

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits	
13C-1-MoCB		952	2180	pg/L	43.6	(15%-150%)	
13C-3-MoCB		1120	2180	pg/L	51.5	(15%-150%)	
13C-4-DiCB		1090	2180	pg/L	49.9	(25%-150%)	
13C-15-DiCB		2100	2180	pg/L	96.5	(25%-150%)	
13C-19-TrCB		1520	2180	pg/L	69.9	(25%-150%)	
13C-37-TrCB		1750	2180	pg/L	80.1	(25%-150%)	
13C-54-TeCB		1360	2180	pg/L	62.5	(25%-150%)	
13C-77-TeCB		2010	2180	pg/L	92.0	(25%-150%)	
13C-81-TeCB		2020	2180	pg/L	92.8	(25%-150%)	
13C-104-PeCB		1530	2180	pg/L	70.2	(25%-150%)	
13C-105-PeCB		1820	2180	pg/L	83.4	(25%-150%)	
13C-114-PeCB		1800	2180	pg/L	82.3	(25%-150%)	
13C-118-PeCB		1870	2180	pg/L	85.8	(25%-150%)	
13C-123-PeCB		1910	2180	pg/L	87.6	(25%-150%)	
13C-126-PeCB		1780	2180	pg/L	81.7	(25%-150%)	
13C-155-HxCB		1620	2180	pg/L	74.4	(25%-150%)	
13C-156-HxCB	C	3230	4360	pg/L	74.1	(25%-150%)	
13C-157-HxCB	C156L						
13C-167-HxCB		1700	2180	pg/L	78.1	(25%-150%)	
13C-169-HxCB		1570	2180	pg/L	71.9	(25%-150%)	
13C-188-HpCB		2050	2180	pg/L	93.8	(25%-150%)	
13C-189-HpCB		1800	2180	pg/L	82.7	(25%-150%)	

В

61.1

pg/L

7.26

21.8

1336-36-3

Total PCB Congeners

Report Date: December 21, 2016

of 8

Page 8

PCB Congeners Certificate of Analysis Sample Summary

Client: Lab Sample ID: 10146001 Date Collected: 1668A Water Client Sample: Date Received:

HALL001 11/21/2016 09:30 11/29/2016 10:25

HALL00114 Project: Matrix: WATER

Client ID: 1611B75-001L Rio Grande-North-11

Parmname

33561

1611B75

Method:

EPA Method 1668A

Prep Basis: As Received

Batch ID: 12/16/2016 17:07 Run Date: Data File: c16dec16a-8

Analyst: MJC

Instrument:

HRP791

Dilution:

Prep Batch: Prep Date:

SDG Number:

33559 13-DEC-16 Prep Method: Prep Aliquot:

SW846 3520C

Prep SOP Ref: CF-OA-E-001

CAS No. Qual Result

917 mL

MDL

Units

PQL

Company and the company of the compa						
Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-202-OcCB		2110	2180	pg/L	96.9	(25%-150%)
13C-205-OcCB		1980	2180	pg/L	90.8	(25%-150%)
13C-206-NoCB		1950	2180	pg/L	89.2	(25%-150%)
3C-208-NoCB		1990	2180	pg/L	91.2	(25%-150%)
3C-209-DeCB		2160	2180	pg/L	99.1	(25%-150%)
3C-28-TrCB		1540	2180	pg/L	70.7	(30%-135%)
3C-111-PeCB		1910	2180	pg/L	87.4	(30%-135%)
3С-178-НрСВ		2050	2180	pg/L	94.0	(30%-135%)

- The target analyte was detected in the associated blank.
- C Congener has coeluters. When Cxxx, refer to congener number xxx for data
- Value is estimated
- Analyte was analyzed for, but not detected above the specified detection limit.

1611B75

33561

SDG Number:

Batch ID:

Run Date:

of 8

Page 1

As Received

PCB Congeners Certificate of Analysis Sample Summary

HALL001

HALL00114 Project: Matrix: WATER

Prep Basis:

Lab Sample ID:	10146002	Date Collected:	11/22/2016 07:00
Client Sample:	1668A Water	Date Received:	11/30/2016 10:45
Client ID:	1611B75-002L Rio Grande-South-11		

Method: 12/16/2016 18:13 Analyst:

Client:

EPA Method 1668A MJC Instrument: HRP791

Dilution: c16dec16a-9 Data File: SW846 3520C Prep SOP Ref: CF-OA-E-001 33559 Prep Method: Prep Batch:

Prep Date:	13-DEC-16	Prep Aliquot:	903,4 mL			
CAS No.	Parmname	Qual	Result	Units	MDL	PQL
2051-60-7	1-MoCB	U	ND	pg/L	7.48	22.1
2051-61-8	2-MoCB	U	ND	pg/L	7.37	22.1
2051-62-9	3-MoCB	U	ND	pg/L	7.37	22.1
13029-08-8	4-DiCB	υ	ND	pg/L	7.44	22.1
16605-91-7	5-DiCB	U	ND	pg/L	8.50	22.1
25569-80-6	6-DiCB	υ	ND	pg/L	8.01	22.1
33284-50-3	7-DiCB	U	ND	pg/L	7.37	22.1
34883-43-7	8-DiCB	U	ND	pg/L	7.86	22.1
34883-39-1	9-DiCB	U	ND	pg/L	7.37	22.1
33146-45-1	10-DiCB	U	ND	pg/L	7.37	22,1
2050-67-1	11-DiCB	J	78.4	pg/L	12.7	111
2974-92-7	12-DiCB	CU	ND	pg/L	14.7	44.3
2974-90-5	13-DiCB	C12				
34883-41-5	14-DiCB	U	ND	pg/L	7.37	22.1
2050-68-2	15-DiCB	1	13.0	pg/L	7.37	22.1
38444-78-9	16-TrCB	U	ND	pg/L	8.92	22.1
37680-66-3	17-TrCB	U	ND	pg/L	7.37	22.1
37680-65-2	18-TrCB	CU	ND	pg/L	14.7	44.3
38444-73-4	19-TrCB	υ	ND	pg/L	7.37	22.1
38444-84-7	20-TrCB	CJ	20.2	pg/L	14.7	44.3
55702-46-0	21-TrCB	CU	ND	pg/L	14.7	44.3
38444-85-8	22-TrCB	U	ND	pg/L	7.37	22.1
55720-44-0	23-TrCB	U	ND	pg/L	7.37	22.1
55702-45-9	24-TrCB	U	ND	pg/L	7.37	22.1
55712-37-3	25-TrCB	U	ND	pg/L	7.37	22.1
38444-81-4	26-TrCB	CU	ND	pg/L	14.7	44.3
38444-76-7	27-TrCB	U	ND	pg/L	7.37	22.1
7012-37-5	28-TrCB	C20				
15862-07-4	29-TrCB	C26				
35693-92-6	30-TrCB	C18				
16606-02-3	31-TrCB	Ĵ	13.4	pg/L	7.37	22.1
38444-77-8	32-TrCB	U	ND	pg/L	7.37	22.1

Congener has coeluters. When Cxxx, refer to congener number xxx for data

Value is estimated

Analyte was analyzed for, but not detected above the specified detection limit.

Lab Sample ID: 10146002

SDG Number:

of 8

PCB Congeners Certificate of Analysis Sample Summary

HALL001

11/22/2016 07:00

11/30/2016 10:45

HALL00114 Project:

1668A Water Client Sample:

1611B75-002L Rio Grande-South-11

Method:

Date Collected:

Date Received:

Client:

Matrix: Prep Basis: WATER

Page 2

Client ID: Batch ID: 33561

1611B75

Run Date: 12/16/2016 18:13 Data File: c16dec16a-9

EPA Method 1668A Analyst: MJC

HRP791 Instrument:

As Received

Dilution: Prep SOP Ref: CF-OA-E-001

Prep Batch: Prep Date:	33559 13-DEC-16	Prep Method: Prep Aliquot:	SW846 3520C 903.4 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	MDL	PQL	
38444-86-9	33-TrCB	C21					
37680-68-5	34-TrCB	U	ND	pg/L	7.37	22.1	
37680-69-6	35-TrCB	U	ND	pg/L	7.37	22.1	
38444-87-0	36-TrCB	U	ND	pg/L	7.37	22.1	
38444-90-5	37-TrCB	J	9.05	pg/L	7.37	22.1	
53555-66-1	38-TrCB	U	ND	pg/L	7.37	22.1	
38444-88-1	39-TrCB	Ü	ND	pg/L	7.37	22.1	
38444-93-8	40-TeCB	CU	ND	pg/L	14.7	44,3	
52663-59-9	41-TeCB	U	ND	pg/L	7.37	22.1	
36559-22-5	42-TeCB	U	ND	pg/L	7.37	22.1	
70362-46-8	43-TeCB	U	ND	pg/L	7.37	22.1	
41464-39-5	44-TeCB	CJ	27.1	pg/L	22.1	66.4	
70362-45-7	45-TeCB	CU	ND	pg/L	14.7	44.3	
41464-47-5	46-TeCB	U	ND	pg/L	7.37	22.1	
2437-79-8	47-TeCB	C44					
70362-47-9	48-TeCB	Ŭ	ND	pg/L	7.37	22.1	
41464-40-8	49-TeCB	Cū	ND	pg/L	14.7	44.3	
62796-65-0	50-TeCB	CU	ND	pg/L	14.7	44.3	
68194-04-7	51-TeCB	C45					
35693-99-3	52-TeCB		37.5	pg/L	7.37	22.1	
41464-41-9	53-TeCB	C50					
15968-05-5	54-TeCB	U	ND	pg/L	7.37	22,1	
74338-24-2	55-TeCB	U	ND	pg/L	7.37	22.1	
41464-43-1	56-TeCB	J	11.2	pg/L	7.37	22.1	
70424-67-8	57-TeCB	U	ND	pg/L	7.37	22.1	
41464-49-7	58-TeCB	U	ND	pg/L	7.37	22.1	
74472-33-6	59-TeCB	CU	ND	pg/L	22.1	66,4	
33025-41-1	60-TeCB	U	ND	pg/L	7.37	22.1	
33284-53-6	61-TeCB	CJ	45.1	pg/L	29.4	88.6	
54230-22-7	62-TeCB	C59					
74472-34-7	63-TeCB	U	ND	pg/L	7.37	22.1	
52663-58-8	64-TeCB	2. J .	9.32	pg/L	7.37	22.1	

Congener has coeluters. When Cxxx, refer to congener number xxx for data C

Value is estimated

Analyte was analyzed for, but not detected above the specified detection limit.

SDG Number:

Batch ID:

Run Date:

Lab Sample ID:

of 8

Page 3

PCB Congeners Certificate of Analysis Sample Summary

MJC

Project: HALL00114 WATER Matrix:

1668A Water Client Sample: 1611B75-002L Rio Grande-South-11 Client ID:

1611B75

10146002

33561 Method: 12/16/2016 18:13 Analyst:

EPA Method 1668A

11/22/2016 07:00

11/30/2016 10:45

Prep Basis: Instrument:

HRP791

As Received

Dilution:

Data File: c16dec16a-9 Prep SOP Ref: CF-OA-E-001 SW846 3520C Prep Batch: 33559 Prep Method:

Date Collected:

Date Received:

Prep Batch: Prep Date:	33559 13-DEC-16	Prep Method: Prep Aliquot:	903.4 mL		riep sor Kei.	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	MDL	PQL	
33284-54-7	65-TeCB	C44			0 0000	A CONTRACTOR OF THE PARTY OF TH	330 W.
32598-10-0	66-TeCB	J	17.4	pg/L	7.37	22.1	
73575-53-8	67-TeCB	U	ND	pg/L	7.37	22.1	
73575-52-7	68-TeCB	U	ND	pg/L	7.37	22,1	
60233-24-1	69-TeCB	C49					
32598-11-1	70-TeCB	C61					
41464-46-4	71-TeCB	C40					
41464-42-0	72-TeCB	U	ND	pg/L	7.37	22.1	
74338-23-1	73-TeCB	U	ND	pg/L	7.37	22.1	
32690-93-0	74-TeCB	C61					
32598-12-2	75-TeCB	C59					
70362-48-0	76-TeCB	C61					
32598-13-3	77-TeCB	U	ND	pg/L	7.37	22.1	
70362-49-1	78-TeCB	U	ND	pg/L	7.37	22.1	
41464-48-6	79-TeCB	U	ND	pg/L	7.37	22.1	59
33284-52-5	80-ТеСВ	U	ND	pg/L	7.37	22.1	
70362-50-4	81-TeCB	U	ND	pg/L	7.37	22.1	
52663-62-4	82-PeCB	J	7.68	pg/L	7.37	22.1	
60145-20-2	83-PeCB	n	ND	pg/L	7.37	22.1	
52663-60-2	84-PeCB	J	14.1	pg/L	7.37	22.1	
65510-45-4	85-PeCB	CU	ND	pg/L	22.1	66.4	
55312-69-1	86-PeCB	Cl	46.6	pg/L	44.3	133	
38380-02-8	87-PeCB	C86					
55215-17-3	88-PeCB	CU	ND	pg/L	14.7	44.3	
73575-57-2	89-PeCB	U	ND	pg/L	7.37	22.1	
68194-07-0	90-PeCB	CJ	65.4	pg/L	22.1	66.4	
68194-05-8	91-PeCB	C88					
52663-61-3	92-PeCB	J	11.8	pg/L	7.37	22.1	
73575-56-1	93-PeCB	CU	ND	pg/L	14.7	44.3	
73575-55-0	94-PeCB	U	ND	pg/L	7.37	22.1	
38379-99-6	95-PeCB		43.8	pg/L	7.37	22.1	
73575-54-9	96-PeCB	Ŭ	ND	pg/L	7.37	22.1	

Congener has coeluters. When Cxxx, refer to congener number xxx for data C

Value is estimated

Analyte was analyzed for, but not detected above the specified detection limit.

1611B75

SDG Number:

of 8

Page 4

PCB Congeners Certificate of Analysis Sample Summary

HALL001

Client:

Project: HALL00114

44.3

14.7

pg/L

	Lab Sample I Client Sample	e: 1668A Water	Date Collected: Date Received:	11/22/2016 07:00 11/30/2016 10:45		Matrix:	WATER	
	Client ID: Batch ID: Run Date:	1611B75-002L Rio Grande-South-11 33561 12/16/2016 18:13	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument:	As Received HRP791	
	Data File: Prep Batch: Prep Date:	c16dec16a-9 33559 13-DEC-16	Prep Method: Prep Aliquot:	SW846 3520C 903.4 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
	CAS No.	Parmname	Qual	Result	Units	MDL	PQL	
	41464-51-1	97-PeCB	C86		•			-
	60233-25-2	98-PeCB	CU	ND	pg/L	14.7	44.3	4
	38380-01-7	99-PeCB		26.8	pg/L	7.37	22.1	
	39485-83-1	100-PeCB	C93					
	37680-73-2	101-PeCB	C90					
	68194-06-9	102-PeCB	C98					
	60145-21-3	103-PeCB	U	ND	pg/L	7.37	22.1	
	56558-16-8	104-PeCB	υ	ND	pg/L	7.37	22.1	
	32598-14-4	105-PeCB		33.8	pg/L	7.37	22.1	
	70424-69-0	106-PeCB	U	ND	pg/L	7.37	22.1	
	70424-68-9	107-PeCB	U	ND	pg/L	7.37	22.1	
	70362-41-3	108-PeCB	CU	ND	pg/L	14.7	44.3	
	74472-35-8	109-PeCB	C86					
	38380-03-9	110-PeCB	C	92.3	pg/L	14.7	44.3	
	39635-32-0	111-PeCB	U	ND	pg/L	7.37	22.1	
	74472-36-9	112-PeCB	U	ND	pg/L	7.37	22.1	
	68194-10-5	113-PeCB	C90					
	74472-37-0	114-PeCB	U	ND	pg/L	7.37	22.1	
	74472-38-1	115-PeCB	C110					
-	18259-05-7	116-PeCB	C85					
	68194-11-6	117-PeCB	C85					
	31508-00-6	118-PeCB		68.0	pg/L	7.37	22.1	
	56558-17-9	119-PeCB	C86					
	68194-12-7	120-PeCB	U	ND	pg/L	7.37	22.1	
	56558-18-0	121-PeCB	U	ND	pg/L	7.37	22.1	
	76842-07-4	122-PeCB	U	ND	pg/L	7.37	22.1	
	65510-44-3	123-PeCB	U	ND	pg/L	7.37	22.1	
	70424-70-3	124-PeCB	C108					
	74472-39-2	125-PeCB	C86					
	57465-28-8	126-PeCB	U	ND	pg/L	7.37	22.1	
	39635-33-1	127-PeCB	U	ND	pg/L	7.37	22.1	

CJ

19.9

Comments:

38380-07-3

128-HxCB

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

U Analyte was analyzed for, but not detected above the specified detection limit.

Lab Sample ID: 10146002

SDG Number:

Run Date:

1611B75

Report Date: December 21, 2016

of 8

Page 5

As Received

PCB Congeners
Certificate of Analysis
Sample Summary

HALL001

11/22/2016 07:00

Project: HALL00114 WATER Matrix:

Client Sample:	1668A Water	Date Received:	11/30/2016 10:45
Client ID:	1611B75-002L Rio Grande-South-11		
Batch ID:	33561	Method:	EPA Method 1668A

Client:

Date Collected:

12/16/2016 18:13 Analyst:

Instrument: HRP791 MJC Dilution:

Prep Basis:

Data File: c16dec16a-9 Prep SOP Ref: CF-OA-E-001 SW846 3520C Prep Batch: 33559 Prep Method:

Prep Date:	13-DEC-16	Prep Aliquot:	903.4 mL		. rep dor new	
CAS No.	Parmname	Qual	Result	Units	MDL	PQL
55215-18-4	129-HxCB	c	160	pg/L	22.1	66.4
52663-66-8	130-HxCB	J	8.66	pg/L	7.37	22.1
61798-70-7	131-HxCB	U	ND	pg/L	7.37	22.1
38380-05-1	132-HxCB		43.1	pg/L	14.1	22.1
35694-04-3	133-HxCB	U	ND	pg/L	7.37	22.1
52704-70-8	134-HxCB	U	ND	pg/L	7.44	22.1
52744-13-5	135-HxCB	CJ	39.2	pg/L	14.7	44.3
38411-22-2	136-HxCB	J	12.4	pg/L	7.37	22.1
35694-06-5	137-HxCB	U	ND	pg/L	7.37	22.1
35065-28-2	138-HxCB	C129				
56030-56-9	139-HxCB	CU	ND	pg/L	14.7	44.3
59291-64-4	140-HxCB	C139				
52712-04-6	141-HxCB		24.0	pg/L	7.37	22.1
41411-61-4	142-HxCB	U	ND	pg/L	7.37	22.1
68194-15-0	143-HxCB	U	ND	pg/L	7.37	22.1
68194-14-9	144-HxCB	U	ND	pg/L	7.37	22,1
74472-40-5	145-HxCB	U	ND	pg/L	7.37	22.1
51908-16-8	146-HxCB	J	17.0	pg/L	7.37	22.1
68194-13-8	147-HxCB	C	95.3	pg/L	14.7	44.3
74472-41-6	148-HxCB	U	ND	pg/L	7.37	22.1
38380-04-0	149-HxCB	C147				
68194-08-1	150-HxCB	U	ND	pg/L	7.37	22.1
52663-63-5	151-HxCB	C135				
68194-09-2	152-HxCB	υ	ND	pg/L	7.37	22.1
35065-27-1	153-HxCB	C	116	pg/L	14.7	44.3
60145-22-4	154-HxCB	U	ND	pg/L	7.37	22.1
33979-03-2	155-HxCB	U	ND	pg/L	7.37	22.1
38380-08-4	156-HxCB	CJ	16.8	pg/L	14.7	44.3
69782-90-7	157-HxCB	C156				
74472-42-7	158-HxCB	J	14.4	pg/L	7.37	22.1
39635-35-3	159-HxCB	υ	ND	pg/L	7.37	22.1
41411-62-5	160-HxCB	U	ND	pg/L	7.37	22.1

Congener has coeluters. When Cxxx, refer to congener number xxx for data C

Value is estimated

Analyte was analyzed for, but not detected above the specified detection limit.

Report Date: December 21, 2016

of 8

PCB Congeners Certificate of Analysis Sample Summary

> Project: HALL00114

Client Sample:

SDG Number:

Lab Sample ID: 10146002 1668A Water

1611B75

Client: Date Received:

HALL001 Date Collected: 11/22/2016 07:00 11/30/2016 10:45

Matrix:

WATER

As Received

Page 6

Client ID: Batch ID:

1611B75-002L Rio Grande-South-11 33561

Method:

EPA Method 1668A

Prep Basis:

HRP791

Run Date: Data File:

12/16/2016 18:13 c16dec16a-9

Analyst:

MJC

Instrument: Dilution:

Prep Batch: Prep Date:	33559 13-DEC-16	Prep Method: Prep Aliquot:	SW846 3520C 903.4 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	MDL	PQL	
74472-43-8	161-HxCB	U	ND	pg/L	7.37	22.1	- 100
39635-34-2	162-HxCB	υ	ND	pg/L	7.37	22.1	
74472-44-9	163-HxCB	C129					
74472-45-0	164-HxCB	J	10.2	pg/L	7.37	22.1	
74472-46-1	165-HxCB	U	ND	pg/L	7.37	22.1	
41411-63-6	166-HxCB	C128					
52663-72-6	167-HxCB	υ	ND	pg/L	7.37	22.1	
59291-65-5	168-HxCB	C153					
32774-16-6	169-HxCB	U	ND	pg/L	7.37	22.1	
35065-30-6	170-HpCB		44.1	pg/L	7.37	22.1	
52663-71-5	171-HpCB	CU	ND	pg/L	14.7	44.3	
52663-74-8	172-HpCB	J	8.55	pg/L	7.37	22.1	
68194-16-1	173-HpCB	C171					
38411-25-5	174-HpCB		43.2	pg/L	7.37	22.1	
40186-70-7	175-HpCB	U	ND	pg/L	7.37	22.1	
52663-65-7	176-HpCB	U	ND	pg/L	7.37	22.1	
52663-70-4	177-HpCB		26.6	pg/L	7.37	22.1	
52663-67-9	178-HpCB	J	9.25	pg/L	7.37	22.1	
52663-64-6	179-HpCB	J	15.5	pg/L	7.37	22.1	
35065-29-3	180-HpCB	С	99.8	pg/L	14.7	44.3	
74472-47-2	181-HpCB	U	ND	pg/L	7.37	22.1	
60145-23-5	182-HpCB	U	ND	pg/L	7.37	22.1	8,
52663-69-1	183-НрСВ	CJ	29.5	pg/L	14.7	44.3	
74472-48-3	184-HpCB	U	ND	pg/L	7.37	22.1	
52712-05-7	185-HpCB	C183					
74472-49-4	186-HpCB	U	ND	pg/L	7.37	22.1	
52663-68-0	187-HpCB		55.3	pg/L	7.37	22.1	
74487-85-7	188-HpCB	U	ND	pg/L	7.37	22.1	
39635-31-9	189-HpCB	U	ND	pg/L	7.37	22.1	
41411-64-7	190-HpCB	J	8.55	pg/L	7.37	22.1	
74472-50-7	191-HpCB	U	ND	pg/L	7,37	22.1	
74472-51-8	192-HpCB	U	ND	pg/L	7.37	22.1	

Congener has coeluters. When Cxxx, refer to congener number xxx for data C

Value is estimated

U Analyte was analyzed for, but not detected above the specified detection limit.

CAS No.

Report Date: December 21, 2016

Page 7

HRP791

PQL

Instrument:

MDL

Units

of 8

PCB Congeners Certificate of Analysis Sample Summary

Result

HALL00114 SDG Number: 1611B75 Client: HALL001 Project: 11/22/2016 07:00 Lab Sample ID: 10146002 Date Collected: Matrix: WATER 1668A Water 11/30/2016 10:45 Date Received: Client Sample: Prep Basis: As Received

 Client ID:
 1611B75-002L Rio Grande-South-11

 Batch ID:
 33561 Method:

 Run Date:
 12/16/2016 18:13 Analyst:
 MJC

Parmname

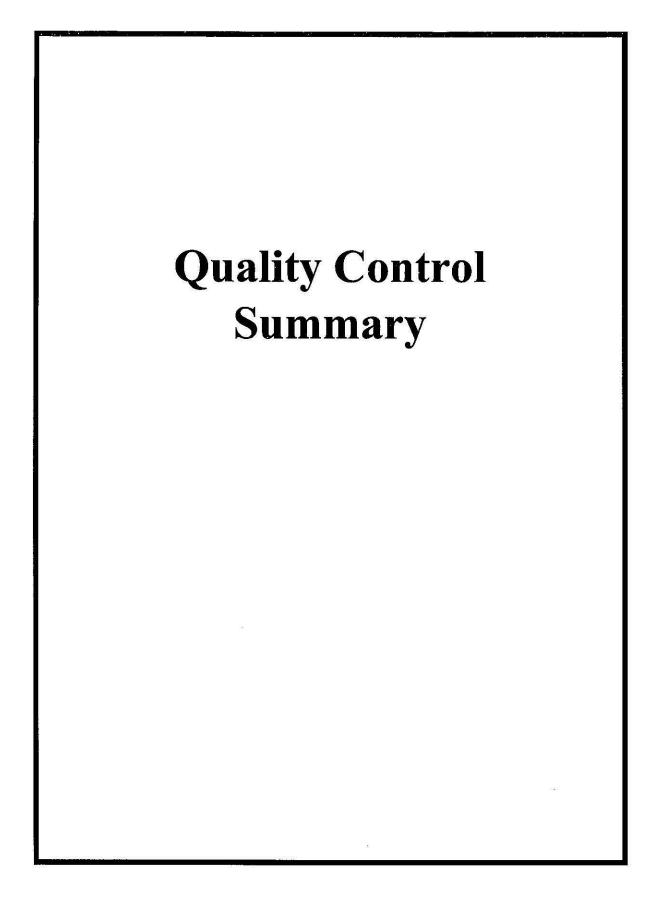
Data File: c16dec16a-9 Dilution: 1
Prep Batch: 33559 Prep Method: SW846 3520C Prep SOP Ref: CF-OA-E-001

Prep Batch: 33559 Prep Method: SW8463520C Prep SOP Ref: CF-OA-E-00
Prep Date: 13-DEC-16 Prep Aliquot: 903.4 mL

Qual

CAS NO.	rarmname		Quai	resuit		Cinto	IVILIE	TQL	
69782-91-8	193-НрСВ		C180			, unum			
35694-08-7	194-OcCB		J	21.1		pg/L	7.37	22.1	
52663-78-2	195-OcCB		J	8.15		pg/L	7.37	22.1	
42740-50-1	196-OcCB		J	10.8		pg/L	7.37	22.1	
33091-17-7	197-OcCB		CU	ND		pg/L	14.7	44.3	
68194-17-2	198-OcCB		CJ	25.9		pg/L	14.7	44.3	
52663-75-9	199-OcCB		C198						
52663-73-7	200-OcCB		C197						
40186-71-8	201-OcCB		U	ND		pg/L	7.37	22.1	
2136-99-4	202-OcCB		U	ND		pg/L	7.37	22.1	
52663-76-0	203-OcCB		J	17.3		pg/L	7.37	22.1	
74472-52-9	204-OcCB		U	ND		pg/L	7.37	22.1	
74472-53-0	205-OcCB		U	ND		pg/L	7.37	22.1	
40186-72-9	206-NoCB		J	13.6		pg/L	7.37	22.1	
52663-79-3	207-NoCB		U	ND		pg/L	7.37	22.1	
52663-77-1	208-NoCB		U	ND		pg/L	7.37	22.1	
2051-24-3	209-DeCB		J	12.2		pg/L	7.37	22.1	
1336-36-3	Total PCB Congeners			1720		pg/L	7.37	22.1	
Surrogate/T	racer recovery	Qual	Result	Nominal	Units	Recovery%	Accepta	ble Limits	
13C-1-MoCB			1240	2210	pg/L	56.0	(15%-	150%)	
13C-3-MoCB			1410	2210	pg/L	63.6	(15%-	150%)	
13C-4-DiCB			1360	2210	pg/L	61.6	(25%-	150%)	
13C-15-DiCB			2580	2210	pg/L	117	(25%	150%)	
13C-19-TrCB			1850	2210	pg/L	83.6	(25%-	150%)	
13C-37-TrCB			2010	2210	pg/L	90.9	(25%-	150%)	
13C-54-TeCB			1510	2210	pg/L	68.3	(25%	150%)	
13C-77-TeCB			2290	2210	pg/L	103	(25%	150%)	
13C-81-TeCB			2320	2210	pg/L	105	(25%	150%)	
13C-104-PeCI	3		1680	2210	pg/L	75.7	(25%	150%)	
13C-105-PeCI	3		2010	2210	pg/L	90.7	(25%	150%)	
13C-114-PeCl	В		1980	2210	pg/L	89.3	(25%	150%)	
13C-118-PeCl	B		2040	2210	pg/L	92.0	(25%	-150%)	
13C-123-PeCl	В		2060	2210	pg/L	93.0	(25%	-150%)	
13C-126-PeC			2020	2210	pg/L	91.2	(25%	150%)	
13C-155-HxC			1780	2210	pg/L	80.3		-150%)	
13C-156-HxC		C	3640	4430	pg/L	82.1	1	-150%)	
13C-157-HxC		C156L			re -		,	7	
13C-167-HxC		-1000	1920	2210	pg/L	86.6	(25%	-150%)	
13C-169-HxC			1780	2210	pg/L	80.6		-150%)	
13C-188-HpC			2130	2210	pg/L pg/L	96.3	12	-150%)	
				2210		90.0	7	-150%)	
13C-189-HpC	D		1990	2210	pg/L	90.0	(23%)	120/03	

of 8


Page 8

PCB Congeners
Certificate of Analysis
Sample Summary

				ate of Andle Summa	8.86				
SDG Number: Lab Sample ID: Client Sample:	1611B75 10146002 1668A Water		-	HALL001 11/22/2010 11/30/2010	07:00		Project: Vlatrix:	HALL00114 WATER	
Client ID: Batch ID: Run Date:	1611B75-002L Rio Grande-Se 33561 12/16/2016 18:13	Met	hod: lyst:	EPA Meth	od 1668A		Prep Basis: Instrument:	As Received HRP791	
Data File: Prep Batch: Prep Date:	c16dec16a-9 33559 13-DEC-16	The second second	p Method: p Aliquot:	SW846 35 903.4 mL	20C	-	Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname		Qual	Result		Units	MDL	PQL	
Surrogate/Trace	r recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable	e Limits	
13C-202-OcCB			2270	2210	pg/L	103	(25%-15	0%)	
13C-205-OcCB			2140	2210	pg/L	96.5	(25%-15	0%)	
13C-206-NoCB			2100	2210	pg/L	94.7	(25%-15	0%)	
13C-208-NoCB			2150	2210	pg/L	96.9	(25%-15	0%)	
13C-209-DeCB			2320	2210	pg/L	105	(25%-15	0%)	
13C-28-TrCB			1630	2210	pg/L	73.6	(30%-13	5%)	
13C-111-PeCB			2030	2210	pg/L	91.5	(30%-13	5%)	
13C-178-HpCB			2190	2210	pg/L	99.0	(30%-13	5%)	

Congener has coeluters. When Cxxx, refer to congener number xxx for data

U Analyte was analyzed for, but not detected above the specified detection limit.

Page 1

PCB Congeners

Surrogate Recovery Report

SDG Number: 1611B75 Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
12017565	LCS for batch 33559	13C-1-MoCB		46.8	(15%-140%)
		13C-3-MoCB		52.3	(15%-140%)
		13C-4-DiCB		54.2	(30%-140%)
		13C-15-DiCB		89.2	(30%-140%)
		13C-19-TrCB		72.1	(30%-140%)
		13C-37-TrCB		77.9	(30%-140%)
		13C-54-TeCB		68.5	(30%-140%)
		13C-77-TeCB		88.4	(30%-140%)
		13C-81-TeCB		90.4	(30%-140%)
		13C-104-PeCB		73.7	(30%-140%)
		13C-105-PeCB		82.4	(30%-140%)
	*	13C-114-PeCB		81.6	(30%-140%)
		13C-118-PeCB		83.9	(30%-140%)
		13C-123-PeCB		84.9	(30%-140%)
		13C-126-PeCB		78.7	(30%-140%)
		13C-155-HxCB		79.9	(30%-140%)
		13C-156-HxCB	C	75.5	(30%-140%)
		13C-157-HxCB	C156L	70.4	(200/ 1400/)
		13C-167-HxCB		79.4	(30%-140%)
		13C-169-HxCB		72.2	(30%-140%)
		13C-188-HpCB		104	(30%-140%)
		13C-189-HpCB		85.8	(30%-140%)
	13C-202-OcCB		106	(30%-140%)	
	13C-205-OcCB		93.5 94.5	(30%-140%)	
		13C-206-NoCB		94.5 97.6	(30%-140%) (30%-140%)
		13C-208-NoCB		107	(30%-140%)
		13C-209-DeCB 13C-28-TrCB		74.6	(40%-125%)
		13C-111-PeCB		88.8	(40%-125%)
		13C-178-HpCB		101	(40%-125%)
		150-178-прев		101	(40/0-125/0)
12017566	LCSD for batch 33559	13C-1-MoCB		43.9	(15%-140%)
		13C-3-MoCB		51.9	(15%-140%)
		13C-4-DiCB		50.1	(30%-140%)
		13C-15-DiCB		90.3	(30%-140%)
		13C-19-TrCB		69.3	(30%-140%)
		13C-37-TrCB		72.0	(30%-140%)
		13C-54-TeCB		58.8	(30%-140%)
		13C-77-TeCB		79.7	(30%-140%)
		13C-81-TeCB		81.5	(30%-140%)
		13C-104-PeCB		65.8	(30%-140%)
		13C-105-PeCB		74.2	(30%-140%)
		13C-114-PeCB		72.7	(30%-140%)
		13C-118-PeCB		75.3	(30%-140%)
		13C-123-PeCB		76.0	(30%-140%)
		13C-126-PeCB		71.6	(30%-140%)
		13C-155-HxCB		69.7	(30%-140%)
		13C-156-HxCB	C	67.1	(30%-140%)
		13C-157-HxCB	C156L		(200) - 100/2
		13C-167-HxCB		71.1	(30%-140%)
		13C-169-HxCB		64.2	(30%-140%)
		13C-188-HpCB		91.6	(30%-140%)
		13C-189-HpCB		76.7	(30%-140%)

Page 2

of 3

PCB Congeners

Surrogate Recovery Report

SDG Number: 1611B75 Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
12017566	LCSD for batch 33559	13C-202-OcCB		93.2	(30%-140%)
		13C-205-OcCB		83.4	(30%-140%)
		13C-206-NoCB		83.3	(30%-140%)
		13C-208-NoCB		85.8	(30%-140%)
		13C-209-DeCB		94.5	(30%-140%)
		13C-28-TrCB		71.9	(40%-125%)
		13C-111-PeCB		88.7	(40%-125%)
		13C-178-HpCB	•	98.6	(40%-125%)
017564	MB for batch 33559	13C-1-MoCB		54.3	(15%-150%)
		13C-3-MoCB		57.6	(15%-150%)
		13C-4-DiCB		57.4	(25%-150%)
		13C-15-DiCB		109	(25%-150%)
		13C-19-TrCB		80.5	(25%-150%)
		13C-37-TrCB		90.8	(25%-150%)
		13C-54-TeCB		67.3	(25%-150%)
		13C-77-TeCB		103	(25%-150%)
		13C-81-TeCB		105	(25%-150%)
		13C-104-PeCB		72.9	(25%-150%)
		13C-105-PeCB		86.7	(25%-150%)
25		13C-114-PeCB		85.3	(25%-150%)
		13C-118-PeCB		87.2	(25%-150%)
		13C-123-PeCB		88.4	(25%-150%)
		13C-126-PeCB		84.9	(25%-150%)
		13C-155-HxCB		82.0	(25%-150%)
			C		
		13C-156-HxCB	C	78.6	(25%-150%)
		13C-157-HxCB	C156L	92.7	(250/ 1500/)
		13C-167-HxCB		83.7	(25%-150%)
		13C-169-HxCB		74.8	(25%-150%)
		13C-188-HpCB		106	(25%-150%)
		13C-189-HpCB		88.4	(25%-150%)
		13C-202-OcCB		108	(25%-150%)
		13C-205-OcCB		95.1	(25%-150%)
		13C-206-NoCB		95.2	(25%-150%)
		13C-208-NoCB		100	(25%-150%)
		13C-209-DeCB		108	(25%-150%)
		13C-28-TrCB		74.3	(30%-135%)
		13C-111-PeCB		93.9	(30%-135%)
		13С-178-НрСВ		106	(30%-135%)
0146001	1611B75-001L Rio Grande-North-112116	13C-1-MoCB		43.6	(15%-150%)
		13C-3-MoCB		51.5	(15%-150%)
		13C-4-DiCB		49.9	(25%-150%)
		13C-15-DiCB		96.5	(25%-150%)
		13C-19-TrCB		69.9	(25%-150%)
		13C-37-TrCB		80.1	(25%-150%)
		13C-54-TeCB		62.5	(25%-150%)
		13C-77-TeCB		92.0	(25%-150%)
		13C-81-TeCB		92.8	(25%-150%)
		13C-104-PeCB		70.2	(25%-150%)
		13C-105-PeCB		83.4	(25%-150%)
		13C-114-PeCB		82.3	(25%-150%)
					2.57

Page 3

of 3

PCB Congeners

Surrogate Recovery Report

SDG Number: 1611B75 Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
0146001	1611B75-001L Rio Grande-North-112116	13C-123-PeCB		87.6	(25%-150%)
		13C-126-PeCB		81.7	(25%-150%)
		13C-155-HxCB		74.4	(25%-150%)
		13C-156-HxCB	С	74.1	(25%-150%)
		13C-157-HxCB	C156L		
		13C-167-HxCB		78.1	(25%-150%)
		13C-169-HxCB		71.9	(25%-150%)
		13C-188-HpCB		93.8	(25%-150%)
		13C-189-HpCB		82.7	(25%-150%)
		13C-202-OcCB		96.9	(25%-150%)
		13C-205-OcCB		90.8	(25%-150%)
		13C-206-NoCB		89.2	(25%-150%)
		13C-208-NoCB		91.2	(25%-150%)
		13C-209-DeCB		99.1	(25%-150%)
		13C-28-TrCB		70.7	(30%-135%)
		13C-111-PeCB		87.4	(30%-135%)
		13C-178-HpCB		94.0	(30%-135%)
0146002	1611B75-002L Rio Grande-South-112116	13C-1-MoCB		56.0	(15%-150%)
		13C-3-MoCB		63.6	(15%-150%)
		13C-4-DiCB		61.6	(25%-150%)
		13C-15-DiCB		117	(25%-150%)
		13C-19-TrCB		83.6	(25%-150%)
		13C-37-TrCB		90.9	(25%-150%)
		13C-54-TeCB		68.3	(25%-150%)
		13C-77-TeCB		103	(25%-150%)
		13C-81-TeCB		105	(25%-150%)
		13C-104-PeCB		75.7	(25%-150%)
		13C-105-PeCB		90.7	(25%-150%)
		13C-114-PeCB		89.3	(25%-150%)
		13C-118-PeCB		92.0	(25%-150%)
		13C-123-PeCB		93.0	(25%-150%)
		13C-126-PeCB		91.2	(25%-150%)
		13C-155-HxCB		80.3	(25%-150%)
		13C-156-HxCB	С	82.1	(25%-150%)
		13C-157-HxCB	C156L	02,1	(2070 10070)
		13C-167-HxCB	01002	86.6	(25%-150%)
		13C-169-HxCB		80.6	(25%-150%)
		13C-188-HpCB		96.3	(25%-150%)
		13C-189-HpCB		90.0	(25%-150%)
		13C-202-OcCB		103	(25%-150%)
		13C-205-OcCB		96.5	(25%-150%)
		13C-206-NoCB		94.7	(25%-150%)
		13C-208-NoCB		96.9	(25%-150%)
		13C-209-DeCB		105	(25%-150%)
		13C-28-TrCB		73.6	(30%-135%)
		13C-111-PeCB		91.5	(30%-135%)
		13C-111-FCCB		71.3	(30/0-133/0)

^{*} Recovery outside Acceptance Limits

[#] Column to be used to flag recovery values

D Sample Diluted

PCB Congeners

Page 1 of 2

Quality Control Summary Spike Recovery Report

SDG Number:

1611B75

Sample Type: Laboratory Control Sample WATER

Client ID:

LCS for batch 33559

Lab Sample ID: 12017565

Instrument:

HRP791

Analysis Date: 12/16/2016 10:30

Dilution: 1

Analyst:

MJC

Prep Batch ID:33559

Matrix:

		111	Batch	n ID:	335	61	- Skr	
CAS No.		Parmname	Amount Added pg/L		Spike Conc. pg/L	Recovery	Acceptance Limits	
2051-60-7	LCS	1-MoCB	500	100	547	109	50-150	
2051-62-9	LCS	3-MoCB	500		600	120	50-150	
13029-08-8	LCS	4-DiCB	500		471	94.1	50-150	
2050-68-2	LCS	15-DiCB	500		584	117	50-150	
38444-73-4	LCS	19-TrCB	500		502	100	50-150	
38444-90-5	LCS	37-TrCB	500		512	102	50-150	
15968-05-5	LCS	54-TeCB	1000		977	97.7	50-150	
32598-13-3	LCS	77-TeCB	1000		1000	100	50-150	
70362-50-4	LCS	81-TeCB	1000		1140	114	50-150	
56558-16-8	LCS	104-PeCB	1000		1070	107	50-150	
32598-14-4	LCS	105-PeCB	1000		1260	126	50-150	
74472-37-0	LCS	114-PeCB	1000		1140	114	50-150	
31508-00-6	LCS	118-PeCB	1000		1070	107	50-150	
65510-44-3	LCS	123-PeCB	1000		1050	105	50-150	
57465-28-8	LCS	126-PeCB	1000		1180	118	50-150	
33979-03-2	LCS	155-HxCB	1000		1000	100	50-150	
38380-08-4	LCS	156-HxCB	2000 C	•	2380	119	50-150	
69782-90-7	LCS	157-HxCB	C	156				
52663-72-6	LCS	167-HxCB	1000		1240	124	50-150	
32774-16-6	LCS	169-HxCB	1000		1110	111	50-150	
74487-85-7	LCS	188-НрСВ	1000		1020	102	50-150	
39635-31-9	LCS	189-HpCB	1000		1100	110	50-150	
2136-99-4	LCS	202-OcCB	1500		1490	99.1	50-150	
74472-53-0	LCS	205-OcCB	1500		1440	95.9	50-150	
40186-72-9	LCS	206-NoCB	1500		1470	98.3	50-150	
52663-77-1	LCS	208-NoCB	1500		1580	106	50-150	
2051-24-3	LCS	209-DeCB	1500		1440	95.9	50-150	

of 2

Page 2

PCB Congeners

Quality Control Summary Spike Recovery Report

SDG Number:

1611B75

Sample Type: Laboratory Control Sample Duplicate

Client ID:

LCSD for batch 33559

Matrix:

WATER

Lab Sample ID: 12017566

Analysis Date: 12/16/2016 11:36

Dilution: 1

Instrument: Analyst:

HRP791 MJC

Prep Batch ID:33559

Batch ID:

33561

			Ba	itch II): 335	61			
CAS No.		Parmname	Amount Added pg/L		Spike Conc. pg/L	Recovery	Acceptance Limits	RPD %	Acceptance Limits
2051-60-7	LCSD	1-МоСВ	500		539	108	50-150	1.48	0-20
2051-62-9	LCSD	3-MoCB	500		582	116	50-150	2.95	0-20
13029-08-8	LCSD	4-DiCB	500		472	94.3	50-150	0.225	0-20
2050-68-2	LCSD	15-DiCB	500		577	115	50-150	1.26	0-20
38444-73-4	LCSD	19-TrCB	500		508	102	50-150	1.19	0-20
38444-90-5	LCSD	37-TrCB	500		520	104	50-150	1.42	0-20
15968-05-5	LCSD	54-TeCB	1000		967	96.7	50-150	1.05	0-20
32598-13-3	LCSD	77-TeCB	1000		1010	101	50-150	0.951	0-20
70362-50-4	LCSD	81-TeCB	1000		1140	114	50-150	0.263	0-20
56558-16-8	LCSD	104-PeCB	1000		1080	108	50-150	0.775	0-20
32598-14-4	LCSD	105-PeCB	1000		1280	128	50-150	1.14	0-20
74472-37-0	LCSD	114-PeCB	1000		1150	115	50-150	1.09	0-20
31508-00-6	LCSD	118-PeCB	1000		1050	105	50-150	1.52	0-20
65510-44-3	LCSD	123-PeCB	1000		1040	104	50-150	1.06	0-20
57465-28-8	LCSD	126-PeCB	1000		1190	119	50-150	1.07	0-20
33979-03-2	LCSD	155-HxCB	1000		992	99.2	50-150	1.08	0-20
38380-08-4	LCSD	156-HxCB	2000	C	2390	120	50-150	0.627	0-20
69782-90-7	LCSD	157-HxCB		C156					
52663-72-6	LCSD	167-HxCB	1000		1230	123	50-150	0.497	0-20
32774-16-6	LCSD	169-HxCB	1000		1120	112	50-150	0.674	0-20
74487-85-7	LCSD	188-HpCB	1000		1010	101	50-150	0.458	0-20
39635-31-9	LCSD	189-HpCB	1000		1080	108	50-150	1.46	0-20
2136-99-4	LCSD	202-OcCB	1500		1470	98.3	50-150	0.805	0-20
74472-53-0	LCSD	205-OcCB .	1500		1430	95.1	50-150	0.842	0-20
40186-72-9	LCSD	206-NoCB	1500		1480	98.5	50-150	0.186	0-20
52663-77-1	LCSD	208-NoCB	1500		1570	105	50-150	0.500	0-20
2051-24-3	LCSD	209-DeCB	1500		1430	95.2	50-150	0.680	0-20

Cape Fear Analytical LLC

Report Date:

December 21, 2016

of 1

Page 1

Method Blank Summary

SDG Number:

1611B75

MB for batch 33559

Client ID: Lab Sample ID: 12017564

Column:

Client: Instrument ID:

Prep Date:

HALL001 HRP791

13-DEC-16

Matrix:

WATER

Data File: c16dec16a-4 Analyzed: 12/16/16 12:42

This method blank applies to the following samples and quality control samples:

	Client Sample ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed	
01	LCS for batch 33559	12017565	c16dec16a-2	12/16/16	1030	- 100
02	LCSD for batch 33559	12017566	c16dec16a-3	12/16/16	1136	
03	1611B75-001L Rio Grande-North-112116	10146001	c16dec16a-8	12/16/16	1707	
04	1611B75-002L Rio Grande-South-112116	10146002	c16dec16a-9	12/16/16	1813	

1611B75

SDG Number:

PCB Congeners Certificate of Analysis Sample Summary

HALL001

Project:

Client:

Page 1

HALL00114

of 8

Lab Sample ID: 12017564 Client Sample: QC for batch 33559		Citati Izazio			Matrix:	WATER		
Client ID: Batch ID: Run Date: Data File:	MB for batch 33559 33561 12/16/2016 12:42 c16dec16a-4	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument: Dilution:	As Received HRP791		
Prep Batch: Prep Date:	33559 13-DEC-16	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:	CF-UA-E-001		
CAS No.	Parmuame	Qual	Result	Units	MDL	PQL		
2051-60-7	1-MoCB	U	ND	pg/L	6.76	20.0		
2051-61-8	2-MoCB	υ	ND	pg/L	6.66	20.0		
2051-62-9	3-MoCB	U	ND	pg/L	6.66	20.0		
13029-08-8	4-DiCB	U	ND	pg/L	6.72	20.0		
16605-91-7	5-DiCB	U	ND	pg/L	7.68	20.0		
25569-80-6	6-DiCB	U	ND	pg/L	7.24	20.0		
33284-50-3	7-DiCB	υ	ND	pg/L	6.66	20.0		
34883-43-7	8-DiCB	U	ND	pg/L	7.10	20.0		
34883-39-1	9-DiCB	U	ND	pg/L	6.66	20.0		
33146-45-1	10-DìCB	U	ND	pg/L	6.66	20.0		
2050-67-1	11-DiCB	J	35.2	pg/L	11.5	100		
2974-92-7	12-DiCB	CU	ND	pg/L	13.3	40.0		
2974-90-5	13-DiCB	C12						
34883-41-5	14-DiCB	υ	ND	pg/L	6.66	20.0		
2050-68-2	15-DiCB	U	ND	pg/L	6.66	20.0		
38444-78-9	16-TrCB	U	ND	pg/L	8.06	20.0		
37680-66-3	17-TrCB	U	ND	pg/L	6.66	20.0		
37680-65-2	18-TrCB	CU	ND	pg/L	13.3	40.0		
38444-73-4	19-TrCB	U	ND	pg/L	6.66	20.0		
38444-84-7	20-TrCB	CU	ND	pg/L	13.3	40.0		
55702-46-0	21-TrCB	CU	ND	pg/L	13.3	40.0		
38444-85-8	22-TrCB	U	ND	pg/L	6.66	20.0		
55720-44-0	23-TrCB	U	ND	pg/L	6.66	20.0		
55702-45-9	24-TrCB	υ	ND	pg/L	6.66	20.0		
55712-37-3	25-TrCB	υ	ND	pg/L	6.66	20.0		
38444-81-4	26-TrCB	CU	ND	pg/L	13.3	40.0		
38444-76-7	27-TrCB	U	ND	pg/L	6.66	20.0		
7012-37-5	28-TrCB	C20						
15862-07-4	29-TrCB	C26						
35693-92-6	30-TrCB	C18						
16606-02-3	31-TrCB	U	ND	pg/L	6.66	20.0		
38444-77-8	32-TrCB	U	ND	pg/L	6.66	20.0		

Congener has coeluters. When Cxxx, refer to congener number xxx for data

Value is estimated

Analyte was analyzed for, but not detected above the specified detection limit.

Lab Sample ID: 12017564

1611B75

QC for batch 33559

MB for batch 33559

SDG Number:

Client Sample: Client ID: of 8

Page 2

PCB Congeners
Certificate of Analysis
Sample Summary

HALL001

Project:	HALL00114
Matrix:	WATER
Prep Basis:	As Received

Batch ID:	33561	Method:	EPA Method 1668A		
Run Date:	12/16/2016 12:42	Analyst:	MJC	Instrument:	HRP791
Data File:	c16dec16a-4			Dilution:	1
Prep Batch:	33559	Prep Method:	SW846 3520C	Prep SOP Ref:	CF-OA-E-001
Prep Date:	13-DEC-16	Prep Aliquot:	1000 mL		

Client:

Prep Date:	13-DEC-16	Prep Aliquot:	1000 mL				
CAS No.	Parmname	Qual	Result	Units	MDL	PQL	
38444-86-9	33-TrCB	C21					
37680-68-5	34-TrCB	Ŭ	ND	pg/L	6.66	20.0	
37680-69-6	35-TrCB	U	ND	pg/L	6.66	20.0	
38444-87-0	36-TrCB	U	ND	pg/L	6.66	20.0	*
38444-90-5	37-TrCB	U	ND	pg/L	6.66	20.0	
53555-66-1	38-TrCB	U	ND	pg/L	6.66	20.0	
38444-88-1	39-TrCB	U	ND	pg/L	6.66	20.0	
38444-93-8	40-TeCB	CU	ND	pg/L	13.3	40.0	
52663-59-9	41-TeCB	U	ND	pg/L	6.66	20.0	
36559-22-5	42-TeCB	U	ND	pg/L	6.66	20.0	
70362-46-8	43-TeCB	Ŭ	ND	pg/L	6.66	20.0	
41464-39-5	44-TeCB	cu	ND	pg/L	20.0	60.0	
70362-45-7	45-TeCB	CU	ND	pg/L	13.3	40.0	
41464-47-5	46-TeCB	U	ND	pg/L	6.66	20.0	
2437-79-8	47-TeCB	C44					-
70362-47-9	48-TeCB	U	ND	pg/L	6.66	20.0	
41464-40-8	49-TeCB	CU	ND	pg/L	13.3	40.0	
62796-65-0	50-TeCB	CU	ND	pg/L	13.3	40.0	
68194-04-7	51-TeCB	C45					
35693-99-3	52-TeCB	U	ND	pg/L	6.66	20.0	
41464-41-9	53-TeCB	C50					
15968-05-5	54-TeCB	U	ND	pg/L	6.66	20.0	
74338-24-2	55-TeCB	U	ND	pg/L	6.66	20.0	
41464-43-1	56-TeCB	U	ND	pg/L	6.66	20.0	
70424-67-8	57-TeCB	U	ND	pg/L	6.66	20.0	
41464-49-7	58-TeCB	U	ND	pg/L	6.66	20.0	
74472-33-6	59-TeCB	CU	ND	pg/L	20.0	60.0	
33025-41-1	60-TeCB	U	ND	pg/L	6.66	20.0	
33284-53-6	61-TeCB	CU	ND	pg/L	26.6	80.0	
54230-22-7	62-TeCB	C59					
74472-34-7	63-TeCB	U	ND	pg/L	6.66	20.0	
52663-58-8	64-TeCB	U	ND	pg/L	6.66	20.0	

- C Congener has coeluters. When Cxxx, refer to congener number xxx for data
- J Value is estimated
- U Analyte was analyzed for, but not detected above the specified detection limit.

1611B75

12017564

33561

QC for batch 33559

MB for batch 33559

12/16/2016 12:42

SDG Number:

Lab Sample ID:

Client Sample: Client ID:

Batch ID:

Run Date:

Page 3

PCB Congeners Certificate of Analysis Sample Summary

MJC

HALL001

EPA Method 1668A

Client:

Method:

Analyst:

Project: HALL00114 Matrix: WATER

Matrix:

Prep Basis: As Received

Instrument: HRP791 Dilution: 1

Data File: Prep Batch: Prep Date:	c16dec16a-4 33559 13-DEC-16	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	MDL	PQL	
33284-54-7	65-TeCB	C44	W II				
32598-10-0	66-TeCB	U	ND	pg/L	6.66	20.0	
73575-53-8	67-TeCB	U	ND	pg/L	6.66	20.0	
73575-52-7	68-TeCB	U	ND	pg/L	6.66	20.0	
60233-24-1	69-TeCB	C49					
32598-11-1	70-TeCB	C61					
41464-46-4	71-TeCB	C40					
41464-42-0	72-TeCB	U	ND	pg/L	6.66	20.0	
74338-23-1	73-TeCB	U	ND	pg/L	6.66	20.0	
32690-93-0	74-TeCB	C61					
32598-12-2	75-TeCB	C59					
70362-48-0	76-TeCB	C61					
32598-13-3	77-TeCB	U	ND	pg/L	6.66	20.0	
70362-49-1	78-TeCB	υ	ND	pg/L	6,66	20.0	
41464-48-6	79-ТеСВ	U	ND	pg/L	6.66	20.0	
33284-52-5	80-TeCB	U	ND	pg/L	6.66	20.0	
70362-50-4	81-TeCB	U	ND	pg/L	6.66	20.0	
52663-62-4	82-PeCB	υ	ND	pg/L	6.66	20.0	
60145-20-2	83-PeCB	U	ND	pg/L	6.66	20.0	
52663-60-2	84-PeCB	U	ND	pg/L	6.66	20.0	
65510-45-4	85-PeCB	CU	ND	pg/L	20.0	60.0	
55312-69-1	86-PeCB	CU	ND	pg/L	40.0	120	
38380-02-8	87-PeCB	C86					
55215-17-3	88-PeCB	CU	ND	pg/L	13.3	40.0	
73575-57-2	89-PeCB	U	ND	pg/L	6.66	20.0	
68194-07-0	90-PeCB	CU	ND	pg/L	20.0	60.0	*
68194-05-8	91-PeCB	C88					
52663-61-3	92-PeCB	U	ND	pg/L	6.66	20.0	
73575-56-1	93-PeCB	CU	ND	pg/L	13.3	40.0	
73575-55-0	94-PeCB	υ	ND	pg/L	6.66	20.0	
38379-99-6	95-PeCB	U	ND	pg/L	6.66	20.0	
73575-54-9	96-PeCB	υ	ND	pg/L	6.66	20.0	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

U Analyte was analyzed for, but not detected above the specified detection limit.

1611B75

SDG Number:

of 8

Page 4

PCB Congeners Certificate of Analysis Sample Summary

HALL001

Client:

Project: HALL00114

Lab Sample					Matrix:	WATER	
Client Samp							
Client ID: Batch ID:	MB for batch 33559 33561	Method:	EPA Method 1668A		Prep Basis:	As Received	
Run Date:	12/16/2016 12:42	Analyst:	MJC		Instrument:	HRP791	
Data File:	c16dec16a-4	,	ALCOHOL:		Dilution:	1	
Prep Batch:	33559	Prep Method:	SW846 3520C		Prep SOP Ref:	CF-OA-E-001	
Prep Date:	13-DEC-16	Prep Aliquot:	1000 mL				
CAS No.	Parmname	Qual	Result	Units	MDL	PQL	
41464-51-1	97-PeCB	C86				700	
60233-25-2	98-PeCB	CU	ND	pg/L	13.3	40.0	
38380-01-7	99-PeCB	U	ND	pg/L	6.66	20.0	
39485-83-1	100-PeCB	C93					
37680-73-2	101-PeCB	C90					
68194-06-9	102-PeCB	C98					
60145-21-3	103-PeCB	U	ND	pg/L	6.66	20.0	
56558-16-8	104-PeCB	U	ND	pg/L	6.66	20.0	
32598-14-4	105-PeCB	υ	ND	pg/L	6.66	20.0	
70424-69-0	106-PeCB	U	ND	pg/L	6.66	20.0	
70424-68-9	107-PeCB	U	ND	pg/L	6.66	20.0	
70362-41-3	108-PeCB	CU	ND	pg/L	13.3	40.0	
74472-35-8	109-PeCB	C86					
38380-03-9	110-PeCB	cu	ND	pg/L	13.3	40.0	
39635-32-0	111-PeCB	U	ND	pg/L	6.66	20.0	
74472-36-9	112-PeCB	U	ND	pg/L	6.66	20.0	
68194-10-5	113-PeCB	C90					
74472-37-0	114-PeCB	U	ND	pg/L	6.66	20.0	
74472-38-1	115-PeCB	C110					
18259-05-7	116-PeCB	C85					
68194-11-6	117-PeCB	C85					
31508-00-6	118-PeCB	U	ND	pg/L	6.66	20.0	
56558-17-9	119-PeCB	C86					
68194-12-7	120-PeCB	U	ND	pg/L	6.66	20.0	
56558-18-0	121-PeCB	U	ND	pg/L	6.66	20.0	
76842-07-4	122-PeCB	U	ND	pg/L	6.66	20.0	
65510-44-3	123-PeCB	U	ND	pg/L	6.66	20.0	
70424-70-3	124-PeCB	C108					
74472-39-2	125-PeCB	C86					
57465-28-8	126-PeCB	U	ND	pg/L	6.66	20.0	
39635-33-1	127-PeCB	υ	ND	pg/L	6.66	20.0	

CU

ND

pg/L

13.3

40.0

Comments:

38380-07-3

128-HxCB

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

U Analyte was analyzed for, but not detected above the specified detection limit.

Report Date: December 21, 2016

PCB Congeners Certificate of Analysis Sample Summary

Page 5

20.0

6.66

pg/L

of 8

		Баш	pic Summary			
SDG Number	r: 1611B75	Client:	HALL001		Project:	HALL00114
Lab Sample l					Matrix:	WATER
Client Sampl						# C
Client ID:	MB for batch 33559		DD 1 35 /L 146604		Prep Basis:	As Received
Batch ID: Run Date:	33561 12/16/2016 12:42	Method: Analyst:	EPA Method 1668A MJC		Instrument:	HRP791
Data File:	c16dec16a-4	Analyst.	MJC		Dilution:	1
Prep Batch:	33559	Prep Method:	SW846 3520C		Prep SOP Ref:	CF-OA-E-001
Prep Date:	13-DEC-16	Prep Aliquot:	1000 mL			
CAS No.	Parmname	Qual	Result	Units	MDL	PQL
55215-18-4	129-HxCB	cu	ND	pg/L	20.0	60.0
52663-66-8	130-HxCB	U	ND	pg/L	6.66	20.0
61798-70-7	131-HxCB	U	ND	pg/L	6.66	20.0
38380-05-1	132-HxCB	U	ND	pg/L	12.7	20.0
35694-04-3	133-HxCB	U	ND	pg/L	6.66	20.0
52704-70-8	134-HxCB	U	ND	pg/L	6.72	20.0
52744-13-5	135-HxCB	CU	ND	pg/L	13.3	40.0
38411-22-2	136-HxCB	U	ND	pg/L	6.66	20.0
35694-06-5	137-HxCB	U	ND	pg/L	6.66	20.0
35065-28-2	138-HxCB	C129				
56030-56-9	139-HxCB	CU	ND	pg/L	13.3	40.0
59291-64-4	140-HxCB	C139				
52712-04-6	141-HxCB	U	ND	pg/L	6.66	20.0
41411-61-4	142-HxCB	U	ND	pg/L	6.66	20.0
68194-15-0	143-HxCB	U	ND	pg/L	6.66	20.0
68194-14-9	144-HxCB	U	ND	pg/L	6.66	20.0
74472-40-5	145-HxCB	U	ND	pg/L	6.66	20.0
51908-16-8	146-HxCB	U	ND	pg/L	6.66	20.0
68194-13-8	147-HxCB	CU	ND	pg/L	13.3	40.0
74472-41-6	148-HxCB	U	ND	pg/L	6.66	20.0
38380-04-0	149-HxCB	C147				
68194-08-1	150-HxCB	U	ND	pg/L	6.66	20.0
52663-63-5	151-HxCB	C135				
68194-09-2	152-HxCB	U	ND	pg/L	6.66	20.0
35065-27-1	153-HxCB	CU	ND	pg/L	13.3	40.0
60145-22-4	154-HxCB	U	ND	pg/L	6.66	20.0
33979-03-2	155-HxCB	U	ND	pg/L	6.66	20.0
38380-08-4	156-HxCB	CU	ND	pg/L	13.3	40.0
69782-90-7	157-HxCB	C156				
74472-42-7	158-HxCB	U	ND	pg/L	6.66	20.0
39635-35-3	159-HxCB	U	ND	pg/L	6.66	20.0
						20.0

U

ND

Comments:

41411-62-5

- Congener has coeluters. When Cxxx, refer to congener number xxx for data
- Value is estimated

160-HxCB

Analyte was analyzed for, but not detected above the specified detection limit.

Report Date: December 21, 2016

of 8

PCB Congeners Certificate of Analysis Sample Summary

Page 6

SDG Numb	le ID: 12017564	Client:	HALL001		Project: Matrix:	HALL00114 WATER
Client Sam Client ID: Batch ID:	MB for batch 33559 33561	Method:	EPA Method 1668A		Prep Basis:	As Received
Run Date:		Analyst:	MJC		Instrument:	HRP791
Data File:	c16dec16a-4				Dilution:	1
Prep Batch		Prep Method:	SW846 3520C		Prep SOP Ref:	CF-OA-E-001
Prep Date:	13-DEC-16	Prep Aliquot:	1000 mL			
CAS No.	Parmname	Qual	Result	Units	MDL	PQL
74472-43-8	161-HxCB	υ	ND	pg/L	6.66	20.0
39635-34-2	162-HxCB	U	ND	pg/L	6.66	20.0
74472-44-9	163-HxCB	C129				
74472-45-0	164-HxCB	U	ND	pg/L	6.66	20.0
74472-46-1	165-HxCB	U	ND	pg/L	6.66	20,0
41411-63-6	166-HxCB	C128				
52663-72-6	167-HxCB	U	ND	pg/L	6.66	20.0
59291-65-5	168-HxCB	C153				
32774-16-6	169-HxCB	U	ND	pg/L	6.66	20.0
35065-30-6	170-HpCB	U	ND	pg/L	6.66	20.0
52663-71-5	171-HpCB	CU	ND	pg/L	13.3	40.0
52663-74-8	172-HpCB	U	ND	pg/L	6.66	20.0
68194-16-1	173-HpCB	C171				
38411-25-5	174-НрСВ	U	ND	pg/L	6.66	20.0
40186-70-7	175-HpCB	U	ND	pg/L	6.66	20.0
52663-65-7	176-HpCB	U	ND	pg/L	6.66	20.0
52663-70-4	177-НрСВ	U	ND	pg/L	6.66	20.0
52663-67-9	178-HpCB	U	ND	pg/L	6.66	20.0
52663-64-6	179-НрСВ	U	ND	pg/L	6.66	20.0
35065-29-3	180-HpCB	cu	ND	pg/L	13.3	40.0
74472-47-2	181-НрСВ	U	ND	pg/L	6.66	20.0
60145-23-5	182-HpCB	U	ND	pg/L	6.66	20.0
52663-69-1	183-HpCB	CU	ND	pg/L	13.3	40.0
74472-48-3	184-HpCB	U	ND	pg/L	6.66	20.0
52712-05-7	185-HpCB	C183				
74472-49-4	186-HpCB	υ	ND	pg/L	6.66	20.0
52663-68-0	187-HpCB	υ	ND	pg/L	6.66	20.0
74487-85-7	188-HpCB	υ	ND	pg/L	6.66	20.0
39635-31-9	189-HpCB	U	ND	pg/L	6.66	20.0
41411-64-7	190-HpCB	U	ND	pg/L	6.66	20.0
74472-50-7	191-НрСВ	U	ND	pg/L	6.66	20.0
						74 -

U

ND

6.66

pg/L

20.0

Comments:

74472-51-8

- Congener has coeluters. When Cxxx, refer to congener number xxx for data
- Value is estimated

192-НрСВ

U Analyte was analyzed for, but not detected above the specified detection limit.

of 8

PCB Congeners Certificate of Analysis Sample Summary

MJC

SDG Number: 1611B75 Lab Sample ID: 12017564

Client Sample:

QC for batch 33559 MB for batch 33559

Client ID: Batch ID: 33561

Run Date: 12/16/2016 12:42

Data File: c16dec16a-4 33559

Prep Batch:

Client:

Method:

Analyst:

Prep Method:

HALL001

EPA Method 1668A

SW846 3520C

Project:

HALL00114

Page 7

WATER Matrix:

Prep Basis:

As Received

Instrument: **HRP791**

Dilution:

Prep SOP Ref: CF-OA-E-001

Prep Date:	13-DEC-16	Prep Aliquot:	1000 mL				
CAS No.	Parmname	Qual	Result	Units	MDL	PQL	
69782-91-8	193-HpCB	C180	"			5,8835	63
35694-08-7	194-OcCB	U	ND	pg/L	6.66	20.0	
52663-78-2	195-OcCB	U	ND	pg/L	6.66	20.0	
42740-50-1	196-OcCB	υ	ND	pg/L	6.66	20.0	
33091-17-7	197-OcCB	CU	ND	pg/L	13.3	40.0	
68194-17-2	198-OcCB	cu	ND	pg/L	13.3	40.0	
52663-75-9	199-OcCB	C198					
52663-73-7	200-OcCB	C197					
40186-71-8	201-OcCB	U	ND	pg/L	6.66	20.0	
2136-99-4	202-OcCB	U	ND	pg/L	6.66	20.0	
52663-76-0	203-OcCB	U	ND	pg/L	6.66	20.0	
74472-52-9	204-OcCB	U	ND	pg/L	6.66	20.0	
74472-53-0	205-OcCB	U	ND	pg/L	6.66	20.0	
40186-72-9	206-NoCB	U	ND	pg/L	6.66	20.0	
52663-79-3	207-NoCB	U	ND	pg/L	6.66	20.0	
52663-77-1	208-NoCB	U	ND	pg/L	6.66	20.0	
2051-24-3	209-DeCB	U	ND	pg/L	6.66	20.0	
1336-36-3	Total PCB Congeners		35.2	pg/L	6.66	20.0	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits	200.5
13C-1-MoCB	180	1090	2000	pg/L	54.3	(15%-150%)	
13C-3-MoCB		1150	2000	pg/L	57.6	(15%-150%)	
13C-4-DiCB		1150	2000	pg/L	57.4	(25%-150%)	
13C-15-DiCB		2190	2000	pg/L	109	(25%-150%)	
13C-19-TrCB		1610	2000	pg/L	80.5	(25%-150%)	
13C-37-TrCB		1820	2000	pg/L	90.8	(25%-150%)	
13C-54-TeCB		1350	2000	pg/L	67.3	(25%-150%)	
13C-77-TeCB		2050	2000	pg/L	103	(25%-150%)	
13C-81-TeCB		2100	2000	pg/L	105	(25%-150%)	
13C-104-PeCB		1460	2000	pg/L	72.9	(25%-150%)	
13C-105-PeCB		1730	2000	pg/L	86.7	(25%-150%)	
13C-114-PeCB		1710	2000	pg/L	85.3	(25%-150%)	
13C-118-PeCB		1740	2000	pg/L	87.2	(25%-150%)	
13C-123-PeCB		1770	2000	pg/L	88.4	(25%-150%)	
13C-126-PeCB		1700	2000	pg/L	84.9	(25%-150%)	
13C-155-HxCB		1640	2000	pg/L	82.0	(25%-150%)	
13C-156-HxCB	С	3140	4000	pg/L	78.6	(25%-150%)	
13C-157-HxCB	C156L						
13C-167-HxCB		1670	2000	pg/L	83.7	(25%-150%)	12
13C-169-HxCB		1500	2000	pg/L	74.8	(25%-150%)	
13C-188-HpCB		2120	2000	pg/L	106	(25%-150%)	
13C-189-HpCB		1770	2000	pg/L	88.4	(25%-150%)	

PCB Congeners Certificate of Analysis Sample Summary

Page 8

of 8

SDG Number: Lab Sample ID: 12017564

1611B75

Client:

HALL001

Project: Matrix: HALL00114 WATER

QC for batch 33559 Client Sample:

Client ID:

MB for batch 33559

33561

12/16/2016 12:42

Method:

EPA Method 1668A

Prep Basis:

As Received

Batch ID: Run Date:

c16dec16a-4

Analyst:

MJC

Instrument:

HRP791

Dilution:

Data File: Prep Batch: Prep Date:

33559

Prep Method:

SW846 3520C

Prep SOP Ref: CF-OA-E-001

CASNO

13-DEC-16

Prep Aliquot:

1000 mL

CAS No.	Parmname		Qual	Result		Units	MDL	PQL	
urrogate/Tracer recove	ery	Qual	Result	Nominal	Units	Recovery%	Accept	able Limits	
3C-202-OcCB			2160	2000	pg/L	108	(25%	%-150%)	
3C-205-OcCB			1900	2000	pg/L	95.1	(25%	%-150%)	
3C-206-NoCB			1900	2000	pg/L	95.2	(25%	%-150%)	
3C-208-NoCB			2010	2000	pg/L	100	(25%	%-150%)	
3C-209-DeCB			2160	2000	pg/L	108	(25%	%-150%)	
3C-28-TrCB			1490	2000	pg/L	74.3	(30%	%-135%)	
3C-111-PeCB			1880	2000	pg/L	93.9	(30%	%-135%)	
3C-178-HpCB			2120	2000	pg/L	106	(30%	%-135%)	

- Congener has coeluters. When Cxxx, refer to congener number xxx for data
- Value is estimated
- Analyte was analyzed for, but not detected above the specified detection limit.

Report Date: December 21, 2016

Page 1

(30%-140%)

of 2

PCB Congeners Certificate of Analysis Sample Summary

1611B75 Client: HALL00114 SDG Number: HALL001 Project: 12017565 Lab Sample ID: WATER Matrix: QC for batch 33559 Client Sample: Client ID: LCS for batch 33559 Prep Basis: As Received Batch ID: 33561 **EPA Method 1668A** Method: HRP791 Run Date: 12/16/2016 10:30 Analyst: MJC Instrument: Data File: c16dec16a-2 Dilution: Prep SOP Ref: CF-OA-E-001 SW846 3520C Prep Batch: 33559 Prep Method: 1000 mL Prep Date: 13-DEC-16 Prep Aliquot: CAS No. Qual MDL **Parmname** Result Units PQL 1-MoCB 2051-60-7 547 6.76 20.0 pg/L 2051-62-9 3-MoCB 600 pg/L 6.66 20.0 13029-08-8 4-DiCB 471 pg/L 6.72 20.0 2050-68-2 15-DiCB 584 pg/L 6.66 20.0 38444-73-4 19-TrCB 502 pg/L 6.66 20.0 38444-90-5 37-TrCB 512 6.66 20.0 pg/L 15968-05-5 54-TeCB 977 pg/L 6.66 20.0 32598-13-3 77-TeCB 1000 pg/L 6.66 20.0 70362-50-4 81-TeCB 1140 6.66 20.0 pg/L 56558-16-8 104-PeCB 1070 6.66 20.0 pg/L 32598-14-4 105-PeCB 1260 6.66 20.0 pg/L 74472-37-0 114-PeCB 1140 6.66 20.0 pg/L 31508-00-6 118-PeCB 1070 pg/L 6.66 20.0 65510-44-3 123-PeCB 1050 6.66 20.0 pg/L 57465-28-8 126-PeCB 1180 pg/L 6.66 20.0 155-HxCB 33979-03-2 1000 6.66 20.0 pg/L 38380-08-4 156-HxCB C 2380 pg/L 13.3 40.0 69782-90-7 157-HxCB C156 52663-72-6 167-HxCB 1240 pg/L 6.66 20.0 32774-16-6 169-HxCB 1110 pg/L 6.66 20.0 74487-85-7 188-HpCB 1020 6.66 20.0 pg/L 39635-31-9 189-HpCB 1100 pg/L 6.66 20.0 2136-99-4 202-OcCB 1490 pg/L 6.66 20.0 74472-53-0 205-OcCB 1440 pg/L 6,66 20.0 40186-72-9 206-NoCB 20.0 1470 pg/L 6.66 52663-77-1 208-NoCB 1580 6.66 20.0 pg/L 2051-24-3 209-DeCB 1440 6.66 20.0 pg/L Surrogate/Tracer recovery Qual Result Nominal Units Recovery% **Acceptable Limits** 13C-1-MoCB 937 2000 46.8 (15%-140%) pg/L 13C-3-MoCB 1050 2000 pg/L 52.3 (15%-140%) pg/L 13C-4-DiCB 1080 2000 54.2 (30%-140%) 13C-15-DiCB 1780 2000 pg/L 89.2 (30%-140%) 13C-19-TrCB 1440 2000 pg/L 72.1 (30%-140%) 13C-37-TrCB 1560 2000 77.9 (30%-140%) pg/L pg/L 13C-54-TeCB 1370 2000 68.5 (30%-140%) 13C-77-TeCB 1770 2000 pg/L 88.4 (30%-140%) 1810 2000 13C-81-TeCB pg/L 90.4 (30%-140%) 2000 13C-104-PeCB 1470 (30%-140%) pg/L 73.7 13C-105-PeCB 1650 2000 pg/L 82.4 (30%-140%) 13C-114-PeCB 1630 2000 pg/L 81.6 (30%-140%)

1680

2000

pg/L

83.9

13C-118-PeCB

Report Date: December 21, 2016

PCB Congeners Certificate of Analysis Sample Summary

Page 2

of 2

SDG Number: 1611B75 Lab Sample ID:

12017565

Client:

HALL001

Project:

HALL00114

Matrix:

WATER

Client Sample:

QC for batch 33559

Client ID: Batch ID: LCS for batch 33559 33561

Run Date:

12/16/2016 10:30

Method: Analyst: EPA Method 1668A

MJC

Prep Basis:

As Received

Instrument: Dilution:

HRP791

Prep SOP Ref: CF-OA-E-001

Prep Batch: Prep Date:

Data File:

c16dec16a-2 33559

13-DEC-16

Prep Method: Prep Aliquot:

SW846 3520C 1000 mL

CAS No.	Parmname	0.40	Qual	Result		Units	MDL	PQL	
Surrogate/Tracer recovery		Qual	Result	Nominal	Units	Recovery%	Accepta	ble Limits	
13C-123-PeCB			1700	2000	pg/L	84.9	(30%	-140%)	
13C-126-PeCB			1570	2000	pg/L	78.7	(30%	-140%)	
13C-155-HxCB			1600	2000	pg/L	79.9	(30%	-140%)	
13C-156-HxCB		С	3020	4000	pg/L	75.5	(30%	-140%)	
13C-157-HxCB		C156L							
13C-167-HxCB			1590	2000	pg/L	79.4	(30%	-140%)	
13C-169-HxCB			1440	2000	pg/L	72.2	(30%	-140%)	
13C-188-HpCB			2070	2000	pg/L	104	(30%	-140%)	
13C-189-HpCB			1720	2000	pg/L	85.8	(30%	-140%)	
13C-202-OcCB			2120	2000	pg/L	106	(30%	-140%)	
13C-205-OcCB			1870	2000	pg/L	93.5	(30%	-140%)	
13C-206-NoCB			1890	2000	pg/L	94.5	(30%	-140%)	
13C-208-NoCB			1950	2000	pg/L	97.6	(30%	-140%)	
13C-209-DeCB			2150	2000	pg/L	107	(30%	-140%)	
13C-28-TrCB			1490	2000	pg/L	74.6	(40%	-125%)	
13C-111-PeCB			1780	2000	pg/L	88.8	(40%	-125%)	
13С-178-НрСВ			2010	2000	pg/L	101	(40%	-125%)	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

of 2

PCB Congeners Certificate of Analysis Sample Summary

HALL00114 HALL001 Project:

Lab Sample ID: 12017566 QC for batch 33559

1611B75

Client Sample: Client ID: LCSD for batch 33559

Batch ID: 33561

SDG Number:

Run Date: 12/16/2016 11:36 Data File: c16dec16a-3 33559 Prep Batch:

Method: Analyst: SW846 3520C Prep Method:

Client:

EPA Method 1668A

MJC

Prep Basis:

Matrix:

WATER

Page 1

As Received

Instrument: HRP791 Dilution:

Prep SOP Ref: CF-OA-E-001

Prep Date:	13-DEC-16	Prep Aliquot:	1000 mL			
CAS No.	Parmname	Qual	Result	Units	MDL	PQL
051-60-7	1-MoCB		539	pg/L	6.76	20.0
051-62-9	3-MoCB		582	pg/L	6.66	20.0
3029-08-8	4-DiCB		472	pg/L	6.72	20.0
050-68-2	15-DiCB		577	pg/L	6.66	20.0
8444-73-4	19-TrCB		508	pg/L	6.66	20.0
8444-90-5	37-TrCB		520	pg/L	6.66	20.0
5968-05-5	54-TeCB		967	pg/L	6.66	20.0
2598-13-3	77-TeCB		1010	pg/L	6.66	20.0
0362-50-4	81-TeCB		1140	pg/L	6.66	20.0
6558-16-8	104-PeCB		1080	pg/L	6.66	20.0
2598-14-4	105-PeCB		1280	pg/L	6.66	20.0
4472-37-0	114-PeCB		1150	pg/L	6.66	20.0
1508-00-6	118-PeCB		1050	pg/L	6.66	20.0
5510-44-3	123-PeCB		1040	pg/L	6.66	20.0
7465-28-8	126-PeCB		1190	pg/L	6.66	20.0
3979-03-2	155-HxCB		992	pg/L	6.66	20.0
8380-08-4	156-HxCB	C	2390	pg/L	13.3	40.0
9782-90-7	157-HxCB	C156				
2663-72-6	167-HxCB		1230	pg/L	6.66	20.0
2774-16-6	169-HxCB		1120	pg/L	6.66	20.0
4487-85-7	188-HpCB		1010	pg/L	6.66	20.0
9635-31-9	189-HpCB		1080	pg/L	6.66	20.0
136-99-4	202-OcCB		1470	pg/L	6.66	20.0
4472-53-0	205-OcCB		1430	pg/L	6.66	20.0
0186-72-9	206-NoCB		1480	pg/L	6.66	20.0
2663-77-1	208-NoCB		1570	pg/L	6.66	20.0
2051-24-3	209-DeCB		1430	pg/L	6.66	20.0

Qual	Result	Nominal	Units	Recovery%	Acceptable Limits	
	877	2000	pg/L	43.9	(15%-140%)	
	1040	2000	pg/L	51.9	(15%-140%)	
	1000	2000	pg/L	50.1	(30%-140%)	
	1810	2000	pg/L	90.3	(30%-140%)	
	1390	2000	pg/L	69.3	(30%-140%)	
	1440	2000	pg/L	72.0	(30%-140%)	
	1180	2000	pg/L	58.8	(30%-140%)	
	1590	2000	pg/L	79.7	(30%-140%)	
	1630	2000	pg/L	81.5	(30%-140%)	
	1320	2000	pg/L	65.8	(30%-140%)	
	1480	2000	pg/L	74.2	(30%-140%)	
	1450	2000	pg/L	72.7	(30%-140%)	
	1510	2000	pg/L	75.3	(30%-140%)	
	Qual	877 1040 1000 1810 1390 1440 1180 1590 1630 1320 1480	877 2000 1040 2000 1000 2000 1810 2000 1390 2000 1440 2000 1180 2000 1590 2000 1630 2000 1320 2000 1480 2000 1450 2000	877 2000 pg/L 1040 2000 pg/L 1000 2000 pg/L 1810 2000 pg/L 1390 2000 pg/L 1440 2000 pg/L 1180 2000 pg/L 1180 2000 pg/L 1590 2000 pg/L 1630 2000 pg/L 1320 2000 pg/L 1480 2000 pg/L 1480 2000 pg/L 1480 2000 pg/L	877 2000 pg/L 43.9 1040 2000 pg/L 51.9 1000 2000 pg/L 50.1 1810 2000 pg/L 90.3 1390 2000 pg/L 69.3 1440 2000 pg/L 72.0 1180 2000 pg/L 58.8 1590 2000 pg/L 79.7 1630 2000 pg/L 79.7 1630 2000 pg/L 81.5 1320 2000 pg/L 65.8 1480 2000 pg/L 74.2 1450 2000 pg/L 72.7	877 2000 pg/L 43.9 (15%-140%) 1040 2000 pg/L 51.9 (15%-140%) 1000 2000 pg/L 50.1 (30%-140%) 1810 2000 pg/L 90.3 (30%-140%) 1390 2000 pg/L 69.3 (30%-140%) 1440 2000 pg/L 72.0 (30%-140%) 1180 2000 pg/L 58.8 (30%-140%) 1590 2000 pg/L 79.7 (30%-140%) 1630 2000 pg/L 81.5 (30%-140%) 1320 2000 pg/L 65.8 (30%-140%) 1480 2000 pg/L 74.2 (30%-140%) 1480 2000 pg/L 74.2 (30%-140%)

Report Date: December 21, 2016

PCB Congeners Certificate of Analysis Sample Summary

HALL001

Client:

Prep Method: Prep Aliquot: Page 2 of 2

SDG Number: 1611B75 Lab Sample ID: 12017566 Client Sample:

33559

QC for batch 33559 LCSD for batch 33559

Batch ID: 33561 Run Date:

Client ID:

Data File:

Prep Batch:

Prep Date:

12/16/2016 11:36 c16dec16a-3

13-DEC-16

Method: Analyst:

EPA Method 1668A

SW846 3520C

 $1000\;mL$

MJC

Prep Basis:

Project:

Matrix:

As Received

HALL00114

WATER

Instrument: **HRP791** Dilution:

Prep SOP Ref: CF-OA-E-001

CAS No.	Parmname		Qual	Result		Units	MDL	PQL	
Surrogate/Tracer re	ecovery	Qual	Result	Nominal	Units	Recovery%	Accept	able Limits	
13C-123-PeCB			1520	2000	pg/L	76.0	(30%	6-140%)	
13C-126-PeCB			1430	2000	pg/L	71.6	(30%	6-140%)	
13C-155-HxCB			1390	2000	pg/L	69.7	(30%	%-140%)	
13C-156-HxCB		c	2680	4000	pg/L	67.1	(30%	6-140%)	
13C-157-HxCB		C156L							
13C-167-HxCB			1420	2000	pg/L	71.1	(30%	6-140%)	
13C-169-HxCB			1280	2000	pg/L	64.2	(30%	6-140%)	
13C-188-HpCB			1830	2000	pg/L	91.6	(30%	%-140%)	
13C-189-HpCB			1530	2000	pg/L	76.7	(30%	%-140%)	
13C-202-OcCB			1860	2000	pg/L	93.2	(30%	%-140%)	
13C-205-OcCB			1670	2000	pg/L	83.4	(30%	6-140%)	
13C-206-NoCB			1670	2000	pg/L	83.3	(30%	6-140%)	
13C-208-NoCB			1720	2000	pg/L	85.8	(30%	%-140%)	
13C-209-DeCB			1890	2000	pg/L	94.5	(30%	%-140%)	
13C-28-TrCB			1440	2000	pg/L	71.9	(40%	%-125%)	
13C-111-PeCB			1770	2000	pg/L	88.7	(40%	%-125%)	
13C-178-HpCB			1970	2000	pg/L	98.6	(40%	%-125%)	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

Hall Environmental Analysis Laboratory, Inc.

WO#: **1611B75**

23-Dec-16

Client: AMAFCA
Project: CMC

Sample ID MB-28858 SampType: MBLK TestCode: EPA Method 1664A

Client ID: PBW Batch ID: 28858 RunNo: 39004

Prep Date: 11/28/2016 Analysis Date: 11/28/2016 SeqNo: 1219830 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

N-Hexane Extractable Material ND 10.0

Sample ID LCS-28858 SampType: LCS TestCode: EPA Method 1664A

Client ID: LCSW Batch ID: 28858 RunNo: 39004

Prep Date: 11/28/2016 Analysis Date: 11/28/2016 SeqNo: 1219831 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

N-Hexane Extractable Material 39.4 10.0 40.00 0 98.5 78 114

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 12 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: 1611B75

23-Dec-16

Client: AMAFCA Project: CMC

Sample ID LLLCS-A

Sample ID MB-A SampType: MBLK TestCode: EPA Method 200.7: Dissolved Metals

Client ID: **PBW** Batch ID: A39376 RunNo: 39376

Analysis Date: 12/14/2016 Prep Date: SeqNo: 1232681 Units: mg/L

Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Calcium ND 1.0 ND Magnesium 1.0

Sample ID LCS-A SampType: LCS TestCode: EPA Method 200.7: Dissolved Metals Client ID: LCSW Batch ID: A39376 RunNo: 39376 Prep Date: Analysis Date: 12/14/2016 SeqNo: 1232682 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

TestCode: EPA Method 200.7: Dissolved Metals

Calcium 50 1.0 50.00 0 99.4 85 115 51 Magnesium 50.00 0 102 85 1.0 115

SampType: LCSLL Client ID: **BatchQC** Batch ID: A39376 RunNo: 39376

Prep Date: Analysis Date: 12/14/2016 SeqNo: 1232683 Units: mg/L

SPK value SPK Ref Val %RPD %REC **RPDLimit** Analyte Result **PQL** LowLimit HighLimit Qual Calcium ND 1.0 0.5000 0 108 50 150 Magnesium ND 0.5000 0 112 50 150 1.0

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Sample pH Not In Range

RLReporting Detection Limit

P

Sample container temperature is out of limit as specified

Page 13 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **1611B75**

23-Dec-16

Client: AMAFCA
Project: CMC

Sample ID LCS	SampType: L (s	Tes	tCode: El	PA 200.8: I	Dissolved Me	tals		
Client ID: LCSW	Batch ID: B3	39114	F	RunNo: 3	9114				
Prep Date:	Analysis Date: 1	2/2/2016	8	SeqNo: 1	224351	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper	0.025 0.0010	0.02500	0	99.7	85	115			
Lead	0.012 0.00050	0.01250	0	99.0	85	115			
Uranium	0.012 0.00050	0.01250	0	95.6	85	115			

Sample ID LLLCS	SampType: LCSLL	TestCode: EPA 200.8:	Dissolved Metals	
Client ID: BatchQC	Batch ID: B39114	RunNo: 39114		
Prep Date:	Analysis Date: 12/2/2016	SeqNo: 1224353	Units: mg/L	
Analyte	Result PQL SPK valu	e SPK Ref Val %REC LowLimit	t HighLimit %RPD	RPDLimit Qual
Copper	ND 0.0010 0.00100	0 0 72.4 50	150	
Lead	ND 0.00050 0.000500	0 0 95.5 50	150	
Uranium	ND 0.00050 0.000500	0 0 92.0 50	150	

Sample ID MB TestCode: EPA 200.8: Dissolved Metals SampType: MBLK Client ID: PBW Batch ID: **B39114** RunNo: 39114 Prep Date: Analysis Date: 12/2/2016 SeqNo: 1224355 Units: mg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

 Copper
 ND
 0.0010

 Lead
 ND
 0.00050

 Uranium
 ND
 0.00050

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 14 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **1611B75**

23-Dec-16

Client: AMAFCA
Project: CMC

Sample ID MB SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R38938 RunNo: 38938

Prep Date: Analysis Date: 11/22/2016 SeqNo: 1217522 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Nitrogen, Nitrite (As N) ND 0.10
Nitrogen, Nitrate (As N) ND 0.10

Sample ID LCS SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R38938 RunNo: 38938

Prep Date: Analysis Date: 11/22/2016 SeqNo: 1217523 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Nitrogen, Nitrite (As N) 0.92 0.10 1.000 0 92.4 90 110

Nitrogen, Nitrate (As N) 2.5 0.10 2.500 0 99.3 90 110

Sample ID 1611B75-001DMS SampType: MS TestCode: EPA Method 300.0: Anions

Client ID: Rio Grande-North-1 Batch ID: R38938 RunNo: 38938

Prep Date: Analysis Date: 11/22/2016 SeqNo: 1217529 Units: mg/L

%REC SPK value SPK Ref Val %RPD **RPDLimit** Analyte Result **PQL** LowLimit HighLimit Qual 0.88 0.10 1.000 88.2 76.7 103

 Nitrogen, Nitrite (As N)
 0.88
 0.10
 1.000
 0
 88.2
 76.7
 103

 Nitrogen, Nitrate (As N)
 2.5
 0.10
 2.500
 0.04580
 96.5
 84.9
 115

Sample ID 1611B75-001DMSD SampType: MSD TestCode: EPA Method 300.0: Anions

Client ID: Rio Grande-North-1 Batch ID: R38938 RunNo: 38938

Prep Date: Analysis Date: 11/22/2016 SeqNo: 1217530 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Nitrogen, Nitrite (As N) 0.90 0.10 1.000 89.6 76.7 103 1.59 20 Nitrogen, Nitrate (As N) 2.5 0.10 2.500 0.04580 98.2 84.9 115 1.77 20

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 15 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **1611B75**

23-Dec-16

Client: AMAFCA
Project: CMC

Sample ID MB-28809 SampType: MBLK TestCode: SM5210B: BOD

Client ID: PBW Batch ID: 28809 RunNo: 39012

Prep Date: 11/22/2016 Analysis Date: 11/27/2016 SeqNo: 1220182 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Biochemical Oxygen Demand ND 2.0

Sample ID MB-28809 SampType: MBLK TestCode: SM5210B: BOD

Client ID: **PBW** Batch ID: **28809** RunNo: **39012**

Prep Date: 11/22/2016 Analysis Date: 11/27/2016 SeqNo: 1220183 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Biochemical Oxygen Demand ND 2.0

Sample ID LCS-28809 SampType: LCS TestCode: SM5210B: BOD

Client ID: LCSW Batch ID: 28809 RunNo: 39012

Prep Date: 11/22/2016 Analysis Date: 11/27/2016 SeqNo: 1220184 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Biochemical Oxygen Demand 210 2.0 198.0 0 109 59.3 123

Sample ID LCSD-28809 SampType: LCSD TestCode: SM5210B: BOD

Client ID: LCSS02 Batch ID: 28809 RunNo: 39012

Prep Date: 11/22/2016 Analysis Date: 11/27/2016 SeqNo: 1220185 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Biochemical Oxygen Demand 220 2.0 198.0 0 111 59.3 123 1.84 29.9

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 16 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: 1611B75

23-Dec-16

Client: AMAFCA Project: CMC

Sample ID MB-28825 SampType: MBLK TestCode: SM 9223B Fecal Indicator: E. coli MPN

PBW Client ID: Batch ID: 28825 RunNo: 38956

Units: CFU/100ml Prep Date: 11/22/2016 Analysis Date: 11/23/2016 SeqNo: 1217926

Analyte SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

E. Coli <1 1.000

Qualifiers:

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix D

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits R

S % Recovery outside of range due to dilution or matrix В Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Reporting Detection Limit

P Sample pH Not In Range

RL

Sample container temperature is out of limit as specified

Page 17 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: **1611B75**

23-Dec-16

Client: AMAFCA
Project: CMC

Sample ID MB SampType: MBLK TestCode: SM 4500 NH3: Ammonia

Client ID: PBW Batch ID: R39298 RunNo: 39298

Prep Date: Analysis Date: 12/9/2016 SeqNo: 1229981 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Nitrogen, Ammonia ND 1.0

Sample ID LCS SampType: LCS TestCode: SM 4500 NH3: Ammonia

Client ID: LCSW Batch ID: R39298 RunNo: 39298

Prep Date: Analysis Date: 12/9/2016 SeqNo: 1229982 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Nitrogen, Ammonia 9.8 1.0 10.00 0 98.0 80 120

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

D C 1 HN (I D

Reporting Detection Limit

P Sample pH Not In Range

RL

W Sample container temperature is out of limit as specified

Page 18 of 22

Hall Environmental Analysis Laboratory, Inc.

WO#: 1611B75

23-Dec-16

Client: AMAFCA **Project: CMC**

Sample ID MB-28952 SampType: MBLK TestCode: EPA Method 365.1: Total Phosphorous

Client ID: PBW Batch ID: 28952 RunNo: 39106

Prep Date: 12/1/2016 Analysis Date: 12/2/2016 SeqNo: 1223359 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Phosphorus, Total (As P) ND 0.010

Sample ID LCS-28952 SampType: LCS TestCode: EPA Method 365.1: Total Phosphorous

Client ID: LCSW Batch ID: 28952 RunNo: 39106

Units: mg/L Prep Date: 12/1/2016 Analysis Date: 12/2/2016 SeqNo: 1223360

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual

Phosphorus, Total (As P) 0.25 0.010 0.2500 0 98.9 110

Sample ID 1611B75-001DMS SampType: MS TestCode: EPA Method 365.1: Total Phosphorous

Client ID: **Rio Grande-North-1** Batch ID: 28952 RunNo: 39106

Prep Date: 12/1/2016 Analysis Date: 12/2/2016 SeqNo: 1223365 Units: mg/L

%RPD **PQL** SPK value SPK Ref Val %REC HighLimit **RPDLimit** Qual Analyte Result LowLimit

Phosphorus, Total (As P) 0.29 0.010 0.2500 0.04180

Sample ID 1611B75-001DMSD SampType: MSD TestCode: EPA Method 365.1: Total Phosphorous

Client ID: Batch ID: 28952 RunNo: 39106 **Rio Grande-North-1**

Prep Date: 12/1/2016 Analysis Date: 12/2/2016 SeqNo: 1223366 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC I owl imit HighLimit %RPD **RPDLimit** Qual

Phosphorus, Total (As P) 0.2500 98.0 0.29 0.010 0.04180 90 110 0.937 20

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Page 19 of 22

P Sample pH Not In Range

RLReporting Detection Limit

Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: **1611B75**

23-Dec-16

Client: AMAFCA
Project: CMC

Sample ID MB-28867 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 28867 RunNo: 39028

Prep Date: 11/28/2016 Analysis Date: 11/29/2016 SeqNo: 1220776 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID LCS-28867 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 28867 RunNo: 39028

Prep Date: 11/28/2016 Analysis Date: 11/29/2016 SeqNo: 1220777 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1010 20.0 1000 0 101 80 120

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Page 20 of 22

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: 1611B75

23-Dec-16

Client: AMAFCA Project: CMC

Sample ID MB-29132 SampType: MBLK TestCode: SM 4500 Norg C: TKN

Client ID: PBW Batch ID: 29132 RunNo: 39357

Prep Date: 12/12/2016 Analysis Date: 12/13/2016 SeqNo: 1231859 Units: mg/L

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual

Nitrogen, Kjeldahl, Total ND 1.0

Sample ID LCS-29132 SampType: LCS TestCode: SM 4500 Norg C: TKN

Client ID: LCSW Batch ID: 29132 RunNo: 39357

Prep Date: 12/12/2016 Analysis Date: 12/13/2016 SeqNo: 1231860 Units: mg/L

Analyte SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Result Qual

Nitrogen, Kjeldahl, Total 10 1.0 10.00 0 102 120

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Page 21 of 22

P Sample pH Not In Range

RL Reporting Detection Limit

Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

WO#: **1611B75**

23-Dec-16

Client: AMAFCA
Project: CMC

Sample ID MB-28852 SampType: MBLK TestCode: SM 2540D: TSS

Client ID: **PBW** Batch ID: **28852** RunNo: **39013**

Prep Date: 11/23/2016 Analysis Date: 11/28/2016 SeqNo: 1220216 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Suspended Solids ND 4.0

Sample ID LCS-28852 SampType: LCS TestCode: SM 2540D: TSS

Client ID: LCSW Batch ID: 28852 RunNo: 39013

Prep Date: 11/23/2016 Analysis Date: 11/28/2016 SeqNo: 1220217 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Suspended Solids 94 4.0 92.50 0 102 83.35 118.92

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

D G 1 HN LD

Page 22 of 22

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Hail Environmental Analysis Laboratory 4901 Howkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website, www.hallenvironmental.com

Sample Log-In Check List

Client Name: AMAFCA Work Order Numi	ber: 1611B75		ReptNo: 1	
Received by/date: 4F 11/12/10				
Logged By: Lindsay Mangin 11/22/2016 9:15:00	AM	Judy Hogo		
Completed By: Undsay Mangin 11/22/2016 9:41:52	AM.	July Hogo		
Reviewed By: 1 12216	P 1130			
Chain of Custody				
1. Custody seals intact on sample bottles?	Yes 🗌	No L	Not Present 🗸	
2. Is Chain of Custody complete?	Yes 🗸	No 🗔	Not Present	
3. How was the sample delivered?	Client			
Log In				
4. Was an attempt made to cool the samples?	Yes 🗸	No 🗆	NA 🗆	
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🗸	No 🗌	NA 🗆	
6. Sample(s) in proper container(s)?	Yes 🔽	No 🗌		
7. Sufficient sample volume for indicated test(s)?	Yes 🗸	No 🗌		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗸	No 🗌		
9. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗆	
10.VOA vials have zero headspace?	Yes 🗸	No 🗌	No VOA Vials	
11. Were any sample containers received broken?	Yes	No 🗸	W. F	
			# of preserved bottles checked /	2
12. Does paperwork match bottle labels?	Yes V	No _	for pH:	312 unless note
(Note discrepancies on chain of custody) 13. Are matrices correctly identified on Chain of Custody?	Yes 🗸	No _	Adjusted?	0
14. Is it clear what analyses were requested?	Yes 🗸	No 🗀	1	70
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🔽	No 🗆	Checked by:	Y.
(in its, trong statement of satisfication)				
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes	No. 🗆	NA 🗸	
Person Notified: Dat	e			
By Whom: Via	eMail	Phone Fax	In Person	
Regarding:				
Client Instructions:				
17. Additional remarks:				
18. Cooler Information				
Cooler No Temp *C Condition Seal Intact Seal No	Seal Date	Signed By		

C	hain-	of-Cu	stody Record	Turn-Around	Time:					1	AL		E	NV	/TE	20	IN P	ME	NT	AI	
Olient:		4 FCA		X Standard					E											RY	,
				Project Name					100		www	v.hal	lenv	ironi	ment	tal.co	mc				
Mailing	Address			CM	C			49	01 H	awki	ins N	VE -	Alb	uqu	erqu	e, NI	M 87	109			
				Project #:			1			5-34					505-						
Phone :	4:			NN	15.0156		18		W.			-	-	_	Req	_	_				The second
email o		pchare	tz-e Ameria, ory	Project Mana	iger:		_	1/2)	0					34)							
	Package:		□ Level 4 (Full Validation)	C Pa	iger: Trick Ch	laveZ	TMB's (8021)	TPH (Gas only)	DRO / MRO)			SIMS)		PO4,SC	PCB's			486			
Accredi				Sampler:			MB	표		=	=	8270 S		Q Q	3082				-		9
□ NEL	AP	□ Othe	DF	On Ice:	≥ Yes	□ No	+	+	RO	118	504.1)	r 82	co	0	8/8		JA)	chre	Non		10
□ EDD	(Type)_			Sample Tem	perature: 5,	9.6	TBE	TBE	B (G	p poi	po	100	etal	2	cide	8	I-VC	attachra			5
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	BTEX + MTBE	BTEX + MTBE	TPH 8015B (GRO /	TPH (Method 418.1)	EDB (Method	PAH's (8310 or	RCRA 8 Metals	Anions (F,CI,NO ₂ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA)	8270 (SemI-VOA)	See a	E col:		Air Bubbles (Y or N)
1/21/16	0930	AQ	Rio Grande North 11216	Numerous	Nummors	-001												+			
22/16	0200	AQ	Rio Grande South 112216	п	tı	-00Z												+	4	-	
																			-		
																					П
Date:	Time: 0915	Relinquist	yed by:	Received by	1	Date Time	Ren	nark P	S: CB	a.	naly	sis	54	16	68						
Date:	Time:	Relinquish	ned by:	Received by:		Date Time		le	tro	hy	dro	vron	5.	7	826	06					
	1																				

SUE

Collaborative Monitoring Cooperative - Analyses List Attach to Chain of Custody

Analyte (Bold Indicates WQS)	CAS#	Fraction	Method#	MDL (µg/L)
Hardness (Ca + Mg)	NA	Total	200.7	2.4
Lead	7439-92-1	Dissolved	200.8	0.09
Copper	7440-50-8	Dissolved	200.8	1.06
Ammonia + organic nitrogen	7664-41-7	Total	350.1	31.32
Total Kjehldal Nitrogen	17778-88-0	Total	351.2	58.78
-Nitrate + Nitrite	14797-55-8	Total	353.2	10.17
Polychlorinated biphenyls (PCBs)	1336-36-3	Total	1668	NK 1014
-Tetrahydrofuran (THF)	109-99-9	Total	8260C	7.9
bis(2-Ethylhexyl)phthalate	117-81-7	Total	8270D	0.2
Dibenzofuran	132-64-9	Total	8270D	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	Total	8270D	0.2
Benzo(b)fluoranthene	205-99-2	Total	8270D	0.1
Benzo(k)fluoranthene	207-08-9	Total	8270D	0.1
Chrysene	218-01-9	Total	8270D	0.2
Benzo(a)pyrene	50-32-8	Total	8270D	0.3
Dibenzo(a,h)anthracene	53-70-3	Total	8270D	0.3
Benzo(a)anthracene	56-55-3	Total	8270D	0.2
Dieldrin	60-57-1	Total	8270D	0.1
Pentachlorophenol	87-86-5	Total	8270D	0.2
Benzidine	92-87-5	Total	8270D	0.1
Chemical Oxygen Demand	E1641638 ²	Total	HACH	5100
Gross alpha (adjusted)	NA	Total	Method 900	0.1 pCi/L
Total Dissolved Solids	E1642222 ^z	Total	SM 2540C	60.4
-Total Suspended Solids	NA	Total	SM 2540D	3450
Biological Oxygen Demand	N/A	Total	Standard Methods	930
Oil and Grease		Total	1664A	5000
Ecoli			SM 9223B	
pН			SM 4500	
Phosphorus		Dissolved	365.1	100
Phosphorus		Total	365.1	100
*Chromium IV		Total	3500Cr C-2011	100

NPDES Permit No. NMR04A000

Appendix F - Minimum Quantification Levels (MQL's)

The following Minimum Quantification Levels (MQL's) are to be used for reporting pollutant data for NPDES permit applications and/or compliance reporting.

POLLUTANTS	MQL μg/l	POLLUTANTS	MQL μg/l
MI	ETALS, RADIOAC	TIVITY, CYANIDE and CHLORINE	
Aluminum	2.5	Molybdenum	10
Antimony	60	Nickel	0.5
Arsenic	0.5	Selenium	5
Barium	100	Silver	0.5
Beryllium	0.5	Thalllium	0.5
Boron	100	Uranium	0.1
Cadmium	1	Vanadium	50
Chromium	10	Zinc	20
Cobalt	50	Cyanide	10
Copper	0.5	Cyanide, weak acid dissociable	10
Lead	0.5	Total Residual Chlorine	33
Mercury (*)	0.0005	n E	
The state of the s	0.005		
		DIOXIN	
2,3,7,8-TCDD	0.00001		
	VOL	ATILE COMPOUNDS	
Acrolein	50	1,3-Dichloropropylene	10
Acrylonitrile	20	Ethylbenzene	10
Benzene	10	Methyl Bromide	50
Bromoform	10	Methylene Chloride	20
Carbon Tetrachloride	2	1,1,2,2-Tetrachloroethane	10
Chlorobenzene	10	Tetrachloroethylene	10
Clorodibromomethane	10	Toluene `	10
Chloroform	50	1,2-trans-Dichloroethylene	10
Dichlorobromomethane	10	1,1,2-Trichloroethane	10
1,2-Dichloroethane	10	Trichloroethylene	10
1,1-Dichloroethylene	10	Vinyl Chloride	10
1,2-Dichloropropane	10		
	A	CID COMPOUNDS	
2-Chlorophenol	10	2,4-Dinitrophenol	50
2,4-Dichlorophenol	10	Pentachlorophenol	5
2,4-Dimethylphenol	10	Phenol	10
4,6-Dinitro-o-Cresol	50	2,4,6-Trichlorophenol	10

ATTACHMENT 2 FY 2017 DRY SEASON COMPLETED DATA VERIFICATION AND VALIDATION FORMS

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet **Study Name: Compliance Monitoring Cooperative (CMC)** Year: FY 2017 (November 2016 – Dry Season Sample) Project Coordinator: For Data Review and Reporting - SJG, BHI **V&V** Reviewer: SJG Data covered by this worksheet: Rio Grande North – 11/3/16 – E. coli Only Sample – Was Not Qualifying Storm Event Version of Verification/Validation Procedures: QAPP - SOP #2 (2/2015) **Step 1: Verify Field Data** A. Are all Field Data forms present and complete? ☐ Yes ☐ No If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken. Missing Field Data Forms Action Taken Total number of occurrences: 0 B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify. Station and Parameter Action Taken Re-verified? Total number of occurrences: 0 C. Are field data on forms consistent with database? \square Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify. Parameter(s) Sampling Station Re-verified? Date Corrected

Total number of occurrences: 0

	Statio	on/RID	Sampling	RID Corrected	Re-verified?	
	_		Date			
otal num	- nber of oc	currences: 0				
					⊠ St	p 1 Completed <i>Initials:</i> <u>SJG</u> <i>Date</i>
iten 2: Ve	arify Data	Deliverables				
top z. vo		Deliveranies				
		Deliverables question been deliv	ered? ⊠ Yes □	No		
. Have al	all data in o	question been deliv	n missing data (sam	ples or blanks) or atta	ach report with appl	able RIDs highlighted. Contact data
. Have al yes, proc nd indicate	all data in o	question been deliv	n missing data (sam	ples or blanks) or atta	ach report with appl Date Missing Data Were Received	able RIDs highlighted. Contact data
. Have al yes, proc nd indicate	all data in one	question been deliver, indicate RIDs with aken. Complete this	n missing data (sams step upon receipt	ples or blanks) or atta of all missing data. Date of Initial	Date Missing Data Were	able RIDs highlighted. Contact data
. Have all yes, proceed indicate	all data in diceed; if no te action te	question been deliver, indicate RIDs with aken. Complete this Submittal Date	n missing data (sams step upon receipt	ples or blanks) or atta of all missing data. Date of Initial	Date Missing Data Were	able RIDs highlighted. Contact data
Have all yes, proceed indicate	all data in diceed; if no te action te	question been deliver, indicate RIDs with aken. Complete this	n missing data (sams step upon receipt	ples or blanks) or atta of all missing data. Date of Initial	Date Missing Data Were	able RIDs highlighted. Contact data
Have all yes, proceed indicate R	all data in onceed; if no ote action to the	question been deliver, indicate RIDs with aken. Complete this Submittal Date	m missing data (same s step upon receipt Missing Data/Parameters	ples or blanks) or atta of all missing data. Date of Initial	Date Missing Data Were Received	
yes, proceed indicate Research	all data in onceed; if no ote action to the action to the analysis of the analysis and the analysis analysis and the analysis analysis and the analysis and the analysis and the analysis and the	question been deliver, indicate RIDs with aken. Complete this Submittal Date submittal Date currences: 0	missing data (same step upon receipt Missing Data/Parameters e the correct num	ples or blanks) or atta of all missing data. Date of Initial Verification Der and type of anal	Date Missing Data Were Received	

Compliance Monitoring Cooperative
11/3/16 Rio Grande North - E. coli Only

	-					
		<u> </u>	[⊠ Step 2 Completed	Initials: SJG	Date: 1/20/17
Step 3: Verify Flow Data						
*Note - Not Applicable - n	no flow data provided with Cosing data on the flow calcul		orrect errors.			
Station	Sampling Date	Flow data missing or incorrect?				
Total number of occurre	nces: <u>0</u>					
B. Identify incorrect or mis	ssing discharge measureme	ents, correct errors in data	abase and re-ve	rify.		
Station	Sampling Date	Flow data missing or incorrect?	Re-verified?	,		
Total number of occurre	nces: <u>0</u>			Not Applicable		
				Step 3 Completed	Initials: <u>SJG</u>	Date: 1/20/17
	Results for Missing Inforr					
	sing/questionable informatio		No			
taken. Complete this step	ate results with missing info upon receipt of missing info	rmation or clarification of	questionable re	sults (clarify question		
change results without writ	tten approval (from lab or Q	A officer) and associated	documentation).		

	RID	Sar	mple Date		r Questiona ation/Results		Acti	on Taken				
		Lab report	order number ences: <u>0</u>	· – 1611208_	v1			Σ	☑ Step 4 Co	mpleted	Initials: SJG	Date: <u>1/20/17</u>
		ate Blanks lytes of cor	Results ncern detected	in blank san	nples?	Yes ∑	☑ No					
office	r or Prog	ram Manag		uest to add a							excel file and for verifying that v	
	RID	Sar	mple Date	Param	eter	[Blank]	[Sample	Validatio n Code/Fla g Applied	Code/Flag verified in database?			
*See	validatio	n procedur	es to determin	e which asso	ociated data	need to	be flagged	d and include	on <i>Validation</i>	n Codes i	Form.	
Total	number	of occurr	ences: <u>0</u>					F	✓ Ston F Co		Initiala: S.IC	Date: 1/20/17
			g Times Viola itted that did n		cified holdin	g times?	☐ Yes			mpieteu	midais. <u>330</u>	<u> Date. 1/20/17</u>
office	r or Prog	ram Manag		est to add ap							excel file and for verifying that v	
R	ID	Sample Date	Parameter	[Blank]	[Sample]	Valida Code App	/Flag ir	Code/Flag ven n database to associated da	ALL			
*See	validatio	n procedur	es to determin	e which asso	ciated data	need to	be flagged	<u></u>				

Total number of o	ccurrences: <u>0</u>								
						⊠ Ste	p 6 Completed	Initials: SJG	Date: 1/20/1
Step 7: Validate Rowere any replicate/ Yes No If no, proceed; if yes officer or Program No codes/flags have be	duplicate pairs so s, list results that Manager with a re	ubmitted outs need to have equest to add	ide of the estal	des applie	d in the datab	ase save the			
RID Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*			
*See validation prod Total number of o		mine which as	ssociated data	need to be	e flagged.	⊠ Ste	ep 7 Completed	Initials: SJG	Date : <u>1/20/10</u>

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Data Verifier/Validator Signature

1/20/17

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the entire study (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL <u>Data Verification and Validation Worksheets</u> and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation	Definition	WQX
Code	Definition Definition	Equivalent
A1	Sample not collected according to SOP	
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet Study Name: Compliance Monitoring Cooperative (CMC) Year: FY 2017 (November 2016 – Dry Season Sample) Project Coordinator: For Data Review and Reporting - SJG, BHI V&V Reviewer: SJG Data covered by this worksheet: Rio Grande North - 11/21/16 and 11/22/16 Version of Verification/Validation Procedures: QAPP - SOP #2 (2/2015) **Step 1: Verify Field Data** A. Are all Field Data forms present and complete? ☐ Yes ☐ No If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken. Missing Field Data Forms Action Taken Total number of occurrences: 0 B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify. Station and Parameter Action Taken Re-verified? Total number of occurrences: 0 C. Are field data on forms consistent with database? \square Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify. Parameter(s) Sampling Station Re-verified? Date Corrected

Total number of occurrences: 0

number of occurrences: 0]	
			⊠ St	ep 1 Completed Initials: SJ(G Date
2: Verify Data Deliverables ave all data in question been o		_	ach renort with anni	icable RIDs highlighted. Conta	ct data s
ndicate action taken. Complete			асп тероп міш аррі	cable Kibs highlighted. Contac	ici uala s
RID Submittal Da	Missing Data/Parameter	Date of Initial Verification	Date Missing Data Were Received		
				_	
	i .				

-	RID	Submittal Date	Missing o Incorrect Parameter	Action Taken	Re-verified?			
					⊠ St	ep 2 Completed	Initials: SJG	Date: 1/20/17
Ste	p 3: Verify Flo	w Data	rovidad with CI	MC sample collection				
A	Identify incorre	ct or missing data on	the flow calculate	ation spreadsheet and	correct errors.			
	S	tation	Sampling Date	Flow data missing or incorrect?				
ļ					_			
Tot	al number of o	occurrences: <u>0</u>						
B.	Identify incorre	ct or missing dischar	ge measuremei	nts, correct errors in da	atabase and re-verify.			
	S	tation	Sampling Date	Flow data missing or incorrect?	Re-verified?			
Tot	al number of o	occurrences: <u>0</u>				Applicable		
		_			☐ St	ep 3 Completed	Initials: SJG	Date: 1/20/17

			Missing Information or						
tak	en. Complete t	his step upon receip	with missing information of t of missing information of al (from lab or QA officer)	r clarific	ation of que	stionable res	sults (clarify q		
	RID	Sample Date	Missing or Questiona Information/Results		Actio	n Taken			
	Rio Grande North & South	11/22/16	Lab report provides two "Total Phosphorous" results, and no "Dissolv Phosphorous" results. Used lower value as	ved	Notified AMA DBS&A of the requested the clearly repor	is and at lab more			
		o report order numbe occurrences: <u>1</u>	<u>"Dissolved Phosphorou</u> er – 1611B12_v1 and 161		2	<u> </u>	Step 4 Cor	mpleted <i>Initials:</i> <u>SJG</u>	_ Date: <u>1/20/17</u>
		Blanks Results s of concern detecte	d in blank samples?	Yes [⊠ No				
offi	cer or Program		eed to have validation co quest to add appropriate v correctly.						
	RID	Sample Date	Parameter	[Blank]	[Sample	Validatio n Code/Fla g Applied	Code/Flag verified in database?		
1		1		l	1				

*See validation procedures to determine which associated data need to be flagged and include on *Validation Codes Form*.

Total number of occurrences: 0

Step 5 Completed Initials: SJG Date: 1/20/17

	 lidate Holdin									
Were any s	samples subm	itted that did	not meet spe	ecified holding	g times?	Yes 🖂	No			
officer or P		ger with a red	quest to add a						excel file and fo verifying that va	
RID	Sample Date	Paramete	r [Blank]	[Sample]	Validation Code/Fla Applied	ag in data	Flag verified abase to ALL iated data?*			
	 ation procedur ber of occurr		ine which ass	ociated data	need to be	flagged.				
							⊠ Ste	p 6 Completed	Initials: SJG	Date: 1/20/17
Were any r Yes If no, proce officer or P	ed; if yes, list	cate pairs su results that r ger with a rec	bmitted outsion need to have quest to add a	de of the esta	des applied	in the datab	ase save the		excel file and fo verifying that va	
RID I	Pairs	Replicate or ouplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*			
*See valida	tion procedur	es to determ	ine which ass	sociated data	need to be	flagged.				
Total num	ber of occurr	ences: <u>0</u>					⊠ Ste	p 7 Completed	Initials: SJG	Date: 1/20/16
		****	*******	******	*******	******	******	******		

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Data Verifier/Validator Signature

1/20/17

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the entire study (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL <u>Data Verification and Validation Worksheets</u> and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	•
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet Study Name: Compliance Monitoring Cooperative (CMC) Year: FY 2017 (November 2016 – Dry Season Sample) Project Coordinator: For Data Review and Reporting - SJG, BHI V&V Reviewer: SJG Data covered by this worksheet: Rio Grande South - 11/22/16 Version of Verification/Validation Procedures: QAPP - SOP #2 (2/2015) **Step 1: Verify Field Data** A. Are all Field Data forms present and complete? ☐ Yes ☐ No If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken. Missing Field Data Forms Action Taken Total number of occurrences: 0 B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify. Station and Parameter Action Taken Re-verified? Total number of occurrences: 0 C. Are field data on forms consistent with database? \square Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify. Parameter(s) Sampling Station Re-verified? Date Corrected

Total number of occurrences: 0

Statio	on/RID	Sampling Date	RID Corrected	Re-verified?		
I number of oc	currences: 0					
				⊠ St	1 Completed Initials: SJG	Date: 1
2: Verify Data	Deliverables					
	Deliverables question been deliv	rered?⊠Yes □	No			
ave all data in one of the contract of the con	question been deliv	n missing data (san	ples or blanks) or att	ach report with appl	ble RIDs highlighted. Contact d	lata sou
s, proceed; if no	question been deliv	n missing data (san		ach report with appl	ble RIDs highlighted. Contact d	lata sou
ave all data in one of the second sec	question been deliver, indicate RIDs with aken. Complete thi	n missing data (sam s step upon receipt Missing	ples or blanks) or attorned of all missing data. Date of Initial	Date Missing	ble RIDs highlighted. Contact d	lata sou
ave all data in one of the contract of the con	question been deliv	n missing data (san s step upon receipt	ples or blanks) or attorned of all missing data. Date of Initial		ble RIDs highlighted. Contact d	lata soı
ave all data in one of the control o	question been deliver, indicate RIDs with aken. Complete thi	n missing data (sam s step upon receipt Missing	ples or blanks) or attorned of all missing data. Date of Initial	Date Missing Data Were	ble RIDs highlighted. Contact d	lata so
ave all data in one of the control o	question been deliver, indicate RIDs with aken. Complete this Submittal Date	n missing data (sam s step upon receipt Missing	ples or blanks) or attorned of all missing data. Date of Initial	Date Missing Data Were	ble RIDs highlighted. Contact d	data so

	RID	Submittal Date	Missing of Incorrect Paramete	Action Taken	Re-verified?			
						<u> </u>		D 4 4/00/47
					∑ St	ep 2 Completed	Initials: SJG	<i>Date:</i> <u>1/20/1/</u>
*No	p 3: Verify Flor te – Not Applica Identify incorred	able – no flow data p	rovided with Cl	MC sample collection ation spreadsheet and	correct errors.			
	St	tation	Sampling Date	Flow data missing or incorrect?				
		occurrences: 0	no modeliromo	nts, correct errors in da	tobase and re verify			
Б.	•	tation	Sampling Date	Flow data missing or incorrect?	Re-verified?			
Tot	al number of o	occurrences: 0				Applicable		
		_			☐ St	ep 3 Completed	Initials: SJG	Date: 1/20/17

Step 4 Completed *Initials:* SJG *Date:* 1/20/17

Step 4: Verify Analytical Results for Missing Information or Questionable Results

Were any results with missing/questionable information identified? ☐ Yes ☐	missing/questionable information identified? X Yes	☐ No
--	--	------

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken
Rio Grande North & South	11/22/16	Lab report provides two "Total Phosphorous" results, and no "Dissolved Phosphorous" results. Used lower value as "Dissolved Phosphorous".	Notified AMAFCA and DBS&A of this and requested that lab more clearly report data.
Rio Grande South	11/22/16	Hexavalent Chromium for Rio Grande South (02) incorrectly labeled in lab report as Rio Grande North	Notified AMAFCA and of this and requested that lab more clearly report data.

*Note – HEAL Lab report order number – 1611B75_v2

Total number of occurrences: 2

_		
Step 5: Validate Blanks Results		
Were any analytes of concern detected in blank samples?	Yes	⊠ No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample	Validatio n Code/Fla g Applied	Code/Flag verified in database?

^{*}See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total num	nber of occu	rrences: <u>0</u>								
							⊠ Ste	p 5 Completed	Initials: SJG	Date: 1/20/17
		ing Times Vic		ecified holding	g times?]Yes ⊠	No			
officer or F	Program Man		quest to add					e results as an e e this step after v		
RID	Sample Date	Paramete	er [Blank]	[Sample]	Validatio Code/Fla Applied	ag in data	/Flag verified abase to ALL ciated data?*			
	<u> </u>	<u> </u>				<u> </u>		-		
Step 7: Va	alidate Repli	cate/Duplicat	e Results (if	applicable)			⊠ Ste _l	o 6 Completed	Initials: SJG	Date: 1/20/17
Were any Yes If no, procofficer or F	replicate/dup ☑ No eed; if yes, lis Program Man	licate pairs su st results that ager with a re	bmitted outsi need to have quest to add	de of the esta	des applied	in the datab	ase save thes	e results as an e e this step after v		
codes/flag	s nave been	added to data	base.							
RID	Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*			
*See valid	ation proced	ures to determ	ine which as	sociated data	need to be	flagged.	<u> </u>			
Total num	nher of occu	rrences: 0								

Step 7 Completed Initials: SJG Date: 1/20/16

******	*******	******	******	*******

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

1/20/17

Data Verifier/Validator Signature

Sach Comey

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the entire study (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL <u>Data Verification and Validation Worksheets</u> and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	•
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	