

Introduction

Flash Flooding: One of the most hazardous natural disasters worldwide.

Hydrologic Models

Infiltration Models: Infiltration models are vital for predicting the onset and magnitude of flash floods.

Infiltration excess overland flow Dry soil Saturated soil

Introduction

Modeling Challenges in Arid and Semi-arid Regions:

- Balancing complexity and data availability.
- model calibration and validation

Selecting Appropriate Infiltration Model

Methods

Infiltration Models:

Simple

Complex

1. Curve Number

2. Initial & Constant Model

Linear & Constant Model (Newly added)

4. Green & Ampt Model

Model Scenarios

Model	Parameter	Parameter value based on published guidance	Parameter range, constrained calibration	Parameter range, unconstrained calibration
Curve number (CN)	CN	85	59 - 95	20 - 100
Green-Ampt (GA)	K _{eff} (mm/h)	15	11 - 21	1 - 200
	ψ (mm)	83	0 - 183	0 - 2000
Initial-constant (IC)	K _{eff} (mm/h)	15	11 - 21	1 - 200
	I _a (mm)	15	0 - 45	0 - 100
Linear-constant (LC)	K _{eff} (mm/h)	15	11 - 21	1 - 200
	F _c (mm)	26	0 - 72	0 - 100

Methods

Testing Model Performance

testing the model performance for a real-world watershed using available rainfall and runoff data

from the Walnut Gulch Experimental watershed.

Why Walnut Gulch?

Available soil texture, rainfall, and runoff data since 1953.

Influenced by the North American monsoon

(Goodrich et al., 2021)

Methods

Results

Model Performance

Highlights:

- Importance of model complexity.
- Importance of constraining parameters range for calibration.
- Optimal balance between complexity and accuracy in LC model.

 We (and many other agencies) currently use this method in our models

- We (and many other agencies) currently use this method in our models
- Why? Because it is simple and easy to apply in practice

- We (and many other agencies) currently use this method in our models
- Why? Because it is simple and easy to apply in practice
- We had some ideas for an improved model that is still simple

- We (and many other agencies) currently use this method in our models
- Why? Because it is simple and easy to apply in practice
- We had some ideas for an improved model that is still simple
- This is the first real-world test of the new model, and it looks promising!

Next steps

 More testing, including in SSCAFCA watersheds

Next steps

- More testing, including in SSCAFCA watersheds
- Additional work at the field lab

Overarching goals

• Develop more accurate tools and actionable information that help us do our job better

Overarching goals

- Develop more accurate tools and actionable information that help us do our job better
- Bridge the gap between theory and practice

Theory

SSCAFCA

Practice

THANK YOU FOR YOUR ATTENTION